
次の曲線と直線で囲まれた部分の面積�6�を求めよ。１

���　\ � �FRV [ �����[ ��
S

�
，[�軸，\�軸　　���　\ �� 
�[ [H ，[ �，[ �，[�軸

次の曲線と�[�軸で囲まれた部分の面積�6�を求めよ。２

���　\ � �[ �� �[ 　　　　　���　\ [�
�

[
��　　　　　����　\ ���� �[H � [H

区間���[��S�において，��つの曲線�\ VLQ[，\ VLQ�[ �で囲まれた図形の面積�6�を３

求めよ。
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次の曲線または直線で囲まれた部分の面積�6�を求めよ。４

���　\ [[H ，\ [H �����[ 
�� ，[ �　　　���　\ ORJ
�

�� [
，\ ORJ[

���　\ (� FRV[，\ VLQ�[ �����[ 
�S 　　���　\ �
� 
ORJ[ ，\ ORJ �[ ���[ 
!�

次の曲線と直線で囲まれた部分の面積�6�を求めよ。５

���　\ HORJ[，\ ��，\ �H，\�軸

���　\ �FRV[ �����[ 
�S ，\ 
�

�
，\ �

�

�
，\�軸

次の曲線と直線で囲まれた部分の面積�6�を求めよ。６

���　[ �\ ��\��，\ �[��

���　\ 
�

([
，\ �，\ 

�

�
，\�軸

���　\ WDQ[ �����[ ��
S

�
，\ (�，\ �，\�軸



曲線�\ ORJ[ �が曲線�\ �D[ �と接するように正の定数�D�の値を定めよ。また，そのと７

き，これらの曲線と�[�軸で囲まれる図形の面積を求めよ。

��つの楕円� �[ �� �\  ��……�①，� �[ � �\  ���……�②�がある。８

���　��つの楕円の���つの交点の座標を求めよ。

���　��つの楕円の内部の重なった部分の面積を求めよ。

次の面積を求めよ。９

���　連立不等式� �[ � �\ ��，[\�(�，[!�，\!��で表される領域の面積

���　��つの楕円� �[ �
�\

�
 �，

�[

�
� �\  ��の内部の重なった部分の面積



曲線� �
� 
��[ � � �\  ��で囲まれる部分の面積�6�を求めよ。10 次の図形の面積�6�を求めよ。11

���　曲線�([�(\ ��と�[�軸および�\�軸で囲まれた図形

���　曲線� �\  �[ 
�� �[ �で囲まれた図形

���　曲線�� �[ ��[\� �\  ��で囲まれた図形

媒介変数�W�によって，[ �FRVW，\ VLQ�W �����W ��
S

�
�と表される曲線と�[�軸で囲まれ12

た部分の面積�6�を求めよ。



[�

�\

�2

媒介変数�W�によって，[ �FRVW�FRV�W，

\ �VLQ W�VLQ�W ����W 
�S �と表される右図の曲線と，

[�軸で囲まれた図形の面積�6�を求めよ。

13 媒介変数�W�によって，[ �W� �W ，\ W�� �W �����W 
�� �と表される曲線と，\�軸で囲ま14

れた図形の面積�6�を求めよ。

方程式�(� �[ 
�\  �
� 
�[ \ �で表される曲線�$�について，次のものを求めよ。15

���　曲線�$�を原点�2�を中心として�
S

�
�だけ回転させてできる曲線の方程式

���　曲線�$�と直線�[ (� �で囲まれる図形の面積



曲線� �& ：\ NVLQ[ �����[ 
��S �と，曲線� �& ：\ FRV[ �����[ 
��S �について，次の問16

いに答えよ。ただし，N!��とする。

���　 �& ， �& �の���交点の�[�座標を�D，E���D 
�E �とするとき，VLQD，VLQE �を�N�を用いて表

　せ。

���　 �& ， �& �で囲まれた図形の面積が����であるとき，N�の値を求めよ。

��[�
S

�
�の範囲で，��曲線�\ WDQ[，\ DVLQ�[ �と�[�軸で囲まれた図形の面積が���と17

なるように，正の実数�D�の値を定めよ。

曲線�\ FRV[ ����
S

�
�[ ��

S

�
�と�[�軸で囲まれる図形を�(�とする。曲線上の点�18

� 
W，FRV W �を通る傾きが���の直線�@�で�(�を分割する。こうして得られた���つの図形の面

積が等しくなるとき，FRV W �の値を求めよ。



[\�平面上に���曲線� �& ：\ [H ���と� �& ：\ � �[H �がある。19

���　 �& �と� �& �の共有点�3�の座標を求めよ。

���　点�3�を通る直線�@�が， �& ， �& �および�\�軸によって囲まれた部分の面積を���等分す

　るとき，@�の方程式を求めよ。

曲線�&：\ [H �上の点�3�� 
W， WH ��W 
!� �における接線を�A�とする。&�と�\�軸の20

共有点を�$，A�と�[�軸の交点を�4�とする。原点を�2�とし，△�$24�の面積

を�6 � 
W �とする。4�を通り�\�軸に平行な直線，\�軸，&�および�A�で囲まれた図

形の面積を�7 � 
W �とする。

���　6 � 
W ，7 � 
W �を�W�で表せ。　　　　���������������　
�W �� �
OLP

7 � 
W

6 � 
W
�を求めよ。　

　　　　　　　　　　　　　　　　　　　　　

J � 
[  
�VLQ [ �とし，��K�S�とする。[�の���次関数�\ K � 
[ �のグラフは原点を頂点とし，21

K � 
K  J � 
K �を満たすとする。このとき，曲線�\ J � 
[ �����[ 
�K �と直線�[ K�および�[

�軸で囲まれた図形の面積を�* � 
K �とする。また，曲線�\ K � 
[ �と直線�[ K�および�[�軸

で囲まれた図形の面積を�+ � 
K �とする。

���　* � 
K ，+ � 
K �を求めよ。　　　　　　　���　
�K ��
OLP

* � 
K

+ � 
K
�を求めよ。



\ VLQ[ �����[ 
�S �で表される曲線を�&�とする。22

���　曲線�&�上の点�3�� 
D，E �における接線�A�の方程式を求めよ。

���　��D�S�とするとき，曲線�&�と接線�A�および直線�[ S�と�\�軸で囲まれる部分の

　面積�6 � 
D �����部分の和��を求めよ。

���　面積�6 � 
D �の最小値とそのときの�D�の値を求めよ。

I � 
[  
[H �[�について，次の問いに答えよ。23

���　W�は実数とする。このとき，曲線�\ I � 
[ �と���直線�[ W，[ W���および�[�軸で囲

　まれた図形の面積�6 � 
W �を求めよ。

���　6 � 
W �を最小にする�W�の値とその最小値を求めよ。

曲線�\ �[H VLQ[ ���[ 
�� �と�[�軸で囲まれた図形で，[�軸の上側にある部分の面積を�\�24

軸に近い方から順に� �6 ， �6 ，……， Q6 ，……�とするとき，
�Q 

OLP

 N �

Q

& N6 �を求めよ。



曲線�\ �[H �と�\ �[H FRV[ �で囲まれた図形のうち，�Q 
�� S�[�QS�を満たす部分の25

面積を� QD �とする���Q 
 �，�，�，…… 。

���　 �D ， QD �の値を求めよ。　　　　　���　
�Q 

OLP � 
����D �D �……� QD �を求めよ。

次の曲線または直線で囲まれた部分の面積�6�を求めよ。ただし，����の�D�は���D���を満26

たす定数とする。

���　\ �
( �[ ，\ [　　　　　　　　���　\ 

[

�[ �
，\ D

���　関数�I � 
[  
��[[H �の極値と曲線�\ I � 
[ �の変曲点の座標を求めよ。27

���　曲線�\ I � 
[ �上の変曲点における接線，曲線�\ I � 
[ �および直線�[ ��で囲まれた

　部分の面積を求めよ。



関数�I � 
[  D �[H ���D�は定数��について，曲線�\ I � 
[ �上の点��� 
E，I � 
E �における接線が�28

\ [�であるとき，次の各問いに答えよ。

���　D�と�E�の値を求めよ。

���　\ I � 
[ �の逆関数を�\ ��I � 
[ �と表す。このとき，曲線�\ I � 
[ ，\ ��I � 
[ ，

　[�軸および�\�軸によって囲まれる部分の面積を求めよ。

媒介変数表示�[ VLQ W，\ �W ���ただし���S�W��S��で表された曲線で囲まれた領域の29

面積を求めよ。なお，領域が複数ある場合は，その面積の総和を求めよ。

極方程式�  U I � 
K ��� 
�D �K E �で表される曲線上の点と極�2�を結んだ線分が通過する領域30

の面積は�  6
�

� ' D

E
�U GK�と表される。これを用いて，極方程式�  U �� 
�� FRVK �

� ��� �K
S

�
�で表される曲線上の点と極�2�を結んだ線分が通過する領域の面積を求めよ。



極方程式�U ��VLQ
K

�
����K 
�S �で表される曲線�&�と�[�軸で囲まれる領域の面積を，次31

のことを利用して求めよ。

　極方程式�U I � 
K ���D�K 
�E �で表される曲線上の点と極�2�を結んだ線分が通過する

　領域の面積は�6 
�

� ' D
E
�U GK�と表される。



次の曲線と直線で囲まれた部分の面積�6�を求めよ。１

���　\ � �FRV [ �����[ ��
S

�
，[�軸，\�軸　　���　\ �� 
�[ [H ，[ �，[ �，[�軸

S　���　
S

�
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 解説
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�2

S

�

�� \ � �FRV [

6

���　��[�
S

�
�で�\���であるから

　　6 �' �
S
�
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� �FRV [ G[
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S
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�
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�
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S

�
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�[ [H
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[ �

� �

[ … � …
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\ � �H �

6�

���　\ � � [H ��� 
�[ [H  �� 
�[ [H

　\ � ��とすると　　[ �

　増減表は右のようになる。

　曲線と�[�軸の交点の�[�座標は，

　�� 
�[ [H  ��を解いて　��[ �

　��[���で�\!��であるから

　　　6 ' �
�

� 
�� [ [H G[ 
�

�

� �� 
�� [ [H �' �
�

[H G[

　　　�� �H ���
�

�

� �
[H  � �H ��

次の曲線と�[�軸で囲まれた部分の面積�6�を求めよ。２
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[
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�
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 解説

[

\

2 ��

�

\ � �[ �� �[

���　\ ��とすると　　 �[ �� �[  �

　ゆえに　　 �[ �[ 
��  �　　　　よって　　[ �，�

　��[���で�\���であるから

　　　6 ' �
�
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�

�
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�[

�

�[
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�
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�

�
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�
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　　　　\ � ��とすると　　[ ��

[ … �� … � … � …
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�
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�

[
��

　増減表は右の

　ようになる。

　曲線と�[�軸の

　交点の�[�座標

　は，[�
�

[
�� ��から　　 �[ ��[�� �

　ゆえに　　�[ 
�� �[ 
��  �　　　よって　　[ �，�

　��[���で�\���であるから

　　6 �' �
�

� ���[
�

[
� G[ �

�

�

� ���
�[

�
�ORJ[ �[
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�
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�
��ORJ�

[ … ORJ� …
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�\

�2 ORJ� �ORJ�

\ ���� �[H � [H

���　\ � � �[H � [H  � �[H �
�[H 
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　　　 � �[H �
[H 
�� �

[H 
��

　\ � ��とすると， [H �� ��から

　　　　[ ORJ�

　増減表は右のようになる。

　曲線と�[�軸の交点の�[�座標は，���� �[H � [H  ��の両

　辺に� [H �を掛けて整理すると　　 �
� 


[H ��� [H �� �

　ゆえに　�
[H 
�� �

[H 
��  �　　よって　 [H  �，�

　 [H  ��から　[ �　　 [H  ��から　[ ORJ� �ORJ�

　��[��ORJ� �で�\���であるから

　　　6 ' �
�ORJ �

� 
���� � �[H [H G[ 
�

�ORJ �
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�

�
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��  ��ORJ����

区間���[��S�において，��つの曲線�\ VLQ[，\ VLQ�[ �で囲まれた図形の面積�6�を３

求めよ。
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 解説

[�

�\

�2

�

��

S

�
S

�

�
S
�S

\ VLQ [ \ VLQ �[

��曲線の共有点の�[�座標は，VLQ[ VLQ�[

とすると　VLQ[ �VLQ[FRV[

よって　　VLQ[ �� 
��FRV[  �

ゆえに　　VLQ[ �　または　FRV[ 
�

�

��[��S�であるから

　　　　[ �，
S

�
，S，

�

�
S，�S

また，��曲線の位置関係は，右の図のようになり，

面積を求める図形は点�� 
S，� �に関して対称。

よって，��[�S�の範囲で考えると

　　　　　
�

�
6 ' �

S
�
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�

S

� 
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したがって　　6 �

次の曲線または直線で囲まれた部分の面積�6�を求めよ。４

���　\ [[H ，\ [H �����[ 
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�

�� [
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 解説
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2 �

�

H

\ [H

\ [ [H

���　 [[H  [H �とすると　　�[ 
�� [H  �

　 [H !��であるから，[�� ��より　　[ �

　��曲線の概形は右の図のようになり，��[���で�

　 [[H � [H �であるから
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�
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�
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 ORJ��ORJ � 
�� [ �の定義域は　[��

　\ ORJ[ �の定義域は　[!�

　ORJ
�

�� [
 ORJ[ �����[����とすると　　

�

�� [
 [

　よって　　　　� �� 
�[ [

　整理すると　　 �[ ��[�� �

　これを解くと　　[ �，������[���を満たす�

　��曲線の概形は右の図のようになる。

　したがって
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　ゆえに　　FRV[ �　または　VLQ[ (�
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S

�
，

S

�
，
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�
S

　��曲線の概形は右の図のようになり，面積を

　求める図形は点�� �
S

�
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�
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�

　よって　　6 
�� �(�
�

���　\ �
� 
ORJ[ ��……�①，\ �ORJ[ ��……�②　とする。

　①�について，\ ��とすると　　[ �

[ � … � …
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�\

�2 �H

\ �ORJ[

\ �
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ORJ[

�
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ORJ[ ･
�

[
�

　\ � ���とすると　　[ �

　増減表は右のようになる。

　[!��であるから，②�は　　\ �ORJ[

　\ ��とすると　　[ �

　また，[!��のとき，関数�②�は単調に増加する。

　��曲線�①，②�の交点の�[�座標は， �
� 
ORJ[  �ORJ[ �から

　　　　　　ORJ[ �ORJ[ 
��  �

　ゆえに　　ORJ[ �，�　　　　よって　　[ �， �H

　��曲線の概形は右の図のようになり，��[� �H �で��ORJ[� �
� 
ORJ[ �であるから
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 解説

　　
G[

GW
 ���W，

G\

GW
 ���W

G[

GW
 ��とすると　　W ��　　　　

G\

GW
 ��とすると　　W �

�

�

よって，次のような表が得られる。
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�
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� � � � � � �

[ � � �� � �
�

��
� �
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GW
� � � � � � �

\ � � � � �
�

�
� �

[�

�\
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�

2
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�[

W �

W �
�

�
�
�

�

W ��
ゆえに，���W��

�

�
�における�[�を� �[ ，�

�

�
�W���

における�[�を� �[ �とすると
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W ��
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�

� ����W � �W �W  �� 
���� �� �  �

T　���W����における�\�を� �\ ，���W���にお

　ける�\�を� �\ �とすると

　　6 '��
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��

� 
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�
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�

�
�W �W W  �

方程式�(� �[ 
�\  �
� 
�[ \ �で表される曲線�$�について，次のものを求めよ。15

���　曲線�$�を原点�2�を中心として�
S

�
�だけ回転させてできる曲線の方程式

���　曲線�$�と直線�[ (� �で囲まれる図形の面積

S　���　[ �\ 　　���　
�

�

 解説

[�

�\

�2

$

[ �\

S

�

S

�

���　曲線�$�上の点�� 
;，< �を原点を中心として�
S

�
�だけ

　回転した点の座標を�� 
[，\ �とする。

　複素数平面上で，3��;�<L �，4��[�\L ��とすると，点�

　4�を原点を中心として��
S

�
�だけ回転した点が�3�である

　から　　　;�<L �FRV� ��
S

� ��LVLQ � ��
S

� �[ 
�\L

　　　　　　　　　 
�

(�
�� 
�L �[ 
�\L

　　　　　　　　　 
�

(�
�[ 
�\ �

�

(�
��[ 
�\ L

　よって　　; 
�

(�
�[ 
�\ �……�①，< 

�

(�
��[ 
�\

　これらを�(� �; 
�<  �
� 
�; < �に代入すると　　�[ �

� 
(� \

　すなわち　　[ �\ 　　　これが求める曲線の方程式である。

[�

�\

�2

[ �\

[ �\��

�

�

��

���　①�を�; (� �に代入して整理すると　[ �\��

　これは，直線�[ (� �を原点を中心として�
S

�
�だけ回

　転した直線の方程式である。　

　直線�[ �\���と曲線�[ �\ �の交点の�\�座標は，

　�\�� �\ �から　　�\ 
�� �\ 
��  �

　ゆえに　　\ ��，�

　よって，求める面積は

　　　'��
�

� 
���\ � �\ G\ �'��
�

� 
�\ � � 
�\ � G\

　　　　　　　　　　　　 �� ��
�

�
�

� ��� � 
��  
�

�

曲線� �& ：\ NVLQ[ �����[ 
��S �と，曲線� �& ：\ FRV[ �����[ 
��S �について，次の問16

いに答えよ。ただし，N!��とする。

���　 �& ， �& �の���交点の�[�座標を�D，E���D 
�E �とするとき，VLQD，VLQE �を�N�を用いて表

　せ。

���　 �& ， �& �で囲まれた図形の面積が����であるとき，N�の値を求めよ。



S　���　VLQD 
�

( ��N �
，VLQE �

�

( ��N �
　　���　N �(�

 解説

���　 �& ， �& �の���交点の�[�座標は，方程式�NVLQ[ FRV[ ��……�①�の解である。

　①�から　　 �N �VLQ [ �FRV [　　　　よって　　 �N �VLQ [ �� �VLQ [

　ゆえに　　 �VLQ [ 
�

��N �
　　　　　したがって　　VLQ[ �

�

( ��N �

[�

�\

�2

�

D
E

�S

�& ：\ NVLQ [

�& ：\ FRV[

S

　右の図から明らかに　　VLQD!�，VLQE��

　したがって

　　VLQD 
�

( ��N �
，VLQE �

�

( ��N �

���　 �& ， �& �で囲まれた図形の面積を�6�とすると

　　　6 ' D

E

� 
�NVLQ[ FRV[ G[

　　　�� 
D

E

� ���NFRV[ VLQ[

　　　�� N�FRVD 
�FRVE �VLQD�VLQE

　D，E�は�①�の解であるから　　FRVD NVLQD，FRVE NVLQE

　よって　　6 N�NVLQD 
�NVLQE ��VLQD 
�VLQE  �
�N 
�� �VLQD 
�VLQE

　　　　　　�� �
�N 
�� �

�

( ��N � ��
�

( ��N �
 �( ��N �

　6 ���から　　( ��N �  �　　　　ゆえに　　 �N  ��

　N!��であるから　　N �(�

��[�
S

�
�の範囲で，��曲線�\ WDQ[，\ DVLQ�[ �と�[�軸で囲まれた図形の面積が���と17

なるように，正の実数�D�の値を定めよ。
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 解説

��曲線の交点の�[�座標は，方程式�WDQ[ DVLQ�[ ��……�①�の解である。

[ ��は�①�の解であり，[ 
S

�
�は�①�の解ではない。

��[�
S

�
�のとき，①�から　　

VLQ[

FRV[
 �DVLQ[FRV[

ゆえに　　�D �FRV [ �　　　　よって　　 �FRV [ 
�

�D

��[�
S

�
�であるから　　　FRV[ 

�

(�D
　……�②

\ DVLQ�[

\ WDQ[

D

S

�
[

\

2

�

等式�②�を満たす�[�の値を�D����D ��
S

�
�とする。

このとき，��曲線と�[�軸で囲まれた図形の面積�6�は

　　6 ' �
D

WDQ[G[�' D

S
�

DVLQ�[G[

　　�� 
�

D

� ��ORJ � 
FRV[ �
D

� D

S
�

� �FRV�[

　　�� �ORJ � 
FRVD �
D

� ������
�FRV D �
��

　　�� �ORJ
�

(�D
�D

�

� �
�

(�D
 
�

�
ORJ�D�

�

�

6 ��となるための条件は　　
�

�
ORJ�D�

�

�
 �　　　　整理して　　ORJ�D �

ゆえに　　�D H　　　　　したがって　　D 
H

�

曲線�\ FRV[ ����
S

�
�[ ��

S

�
�と�[�軸で囲まれる図形を�(�とする。曲線上の点�18

� 
W，FRVW �を通る傾きが���の直線�@�で�(�を分割する。こうして得られた���つの図形の面

積が等しくなるとき，FRVW �の値を求めよ。

S　FRVW (�� 
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 解説
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W�FRVW

�6 �6

直線�@�が図形�(�を分割するから　　�
S

�
�W�

S

�

図形�(�の面積�6�は　　6 '�S
�

S
�

FRV[G[ �' �
S
�

FRV[G[ �

直線�@�の方程式は　　\�FRV W �･�[ 
�W

すなわち　　　　　　�\ [�W�FRV W　……�①

直線�@�が図形�(�を分割するとき，直線�A�より上の部分の

面積を� �6 ，下の部分の面積を� �6 �とする。

直線�@�と[�軸の交点の�[�座標は，①�で�\ ��とすると，

[ W�FRV W �であるから

　　　　 �6  
�

� �W��W �
�FRVW FRV W�' W

S
�

FRV[G[ 
�

�
�FRV W�

W

S
�

� �VLQ[

　　　　　 
�

�
�FRV W���VLQ W

求める条件は　　� �6  6

ゆえに　　 �FRV W����VLQ W �　すなわち　 �FRV W �VLQ W　……�②

�FRV W �� �VLQ W �を用いて整理すると　　 �VLQ W��VLQW�� �

これを解いて　　　　　��VLQW ���(�

VLQ W ���であるから　　VLQ W ���(�

このとき，②�から　　　� �FRV W ���� 
�(�

FRVW!��であるから　　�FRVW (�� 
��� (�

[\�平面上に���曲線� �& ：\ [H ���と� �& ：\ � �[H �がある。19

���　 �& �と� �& �の共有点�3�の座標を求めよ。

���　点�3�を通る直線�@�が， �& ， �& �および�\�軸によって囲まれた部分の面積を���等分す

　るとき，@�の方程式を求めよ。
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�ORJ� �
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 解説

���　 [H �� � �[H �とすると　　 �
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[H �� [H �� �　　　ゆえに　　�
[H 
�� �

[H 
��  �

　 [H !��であるから　　 [H  �　　　　よって　　[ ORJ�　　　このとき　　\ �

　したがって，点�3�の座標は　　� 
ORJ�，�

ORJ�
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�

�

\
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3

@

�&�&

���　��曲線� �& ， �& �および�\�軸によって囲まれた部分の

　図形を�(�とし，直線�@�の傾きを�P�とする。

　直線�@�が図形�(�を���等分するためには　　P!�

　また，ORJ� D�とおくと，直線�@�の方程式は�

　\ P�[ 
�D ���と表される。

　ここで，図形�(�の面積を�6，直線�@�が図形�(�を分割

　するときの直線�@�より上の部分の面積を� �6 �とする。

　求める条件は，6 � �6 �であるから
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��� �[H [H � G[ �' �
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� ���� �[H P� 
�[ D � G[

　ゆえに　　　　
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　よって　　　　�� �DH � DH ��D���� ����
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�
P �D

　ゆえに　　　　� �DH � DH �P �D ��D�� �

　ここで， DH  ��より� �DH  
�

�
�であるから　　 �PD  �D��
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�� 
�D �

�D
 
�� 
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�
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　ゆえに，直線�@�の方程式は　　\ 
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�ORJ� �

�
� 
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�[ 
�ORJ� ��

　すなわち　　\ 
�� 
�ORJ� �

�
� 
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�
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曲線�&：\ [H �上の点�3�� 
W， WH ��W 
!� �における接線を�A�とする。&�と�\�軸の20

共有点を�$，A�と�[�軸の交点を�4�とする。原点を�2�とし，△�$24�の面積

を�6 � 
W �とする。4�を通り�\�軸に平行な直線，\�軸，&�および�A�で囲まれた図

形の面積を�7 � 
W �とする。

���　6 � 
W ，7 � 
W �を�W�で表せ。　　　　���������������　
�W �� �
OLP

7 � 
W

6 � 
W
�を求めよ。　
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W  
�W �

�
，7 � 
W  

WH

�
�

� 
�W � � �W �H ��　　���　�

 解説
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���　点�$�の座標は　� 
�，�

　\ [H �より�\ � [H �であるから，接線�A�の方程式は

　　　　　　　\� WH  WH �[ 
�W 　　

　すなわち　　\ WH [��� 
�W WH ��……�①

　①�において，\ ��とすると　　� �[��� �
�W WH

　よって　　　[ W��

　ゆえに，点�4�の座標は　　�W 
��，� 　　

　したがって　6 � 
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�

�
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�W � � �W �H ���  WH �W 
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　ここで，W�� V�とおくと，W� ��� ��のとき　V� �� �

　よって　　
�W �� �
OLP

��W �H �
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�VH �

V
 �　

　ゆえに　　
�W �� �
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7 � 
W

6 � 
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 ���･� �



J � 
[  
�VLQ [ �とし，��K�S�とする。[�の���次関数�\ K � 
[ �のグラフは原点を頂点とし，21

K � 
K  J � 
K �を満たすとする。このとき，曲線�\ J � 
[ �����[ 
�K �と直線�[ K�および�[

�軸で囲まれた図形の面積を�* � 
K �とする。また，曲線�\ K � 
[ �と直線�[ K�および�[�軸

で囲まれた図形の面積を�+ � 
K �とする。

���　* � 
K ，+ � 
K �を求めよ。　　　　　　　���　
�K ��
OLP

* � 
K

+ � 
K
�を求めよ。
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 解説
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　また，��次関数�\ K � 
[ �は，K � 
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�D[ ���D 

� �と表される。
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\ VLQ[ �����[ 
�S �で表される曲線を�&�とする。22

���　曲線�&�上の点�3�� 
D，E �における接線�A�の方程式を求めよ。

���　��D�S�とするとき，曲線�&�と接線�A�および直線�[ S�と�\�軸で囲まれる部分の

　面積�6 � 
D �����部分の和��を求めよ。

���　面積�6 � 
D �の最小値とそのときの�D�の値を求めよ。
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� ��SD FRVD��

　　　���　D 
S

�
�のとき最小値�S��

 解説
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���　\ � FRV[ �であるから，接線�A�の方程式は

　　　　　　　\�E � 
FRVD �[ 
�D

　すなわち　　\ [FRVD�E�DFRVD

　E VLQD �であるから

　　　　　　　\ [FRVD�VLQD�DFRVD

���　\ VLQ[ �から　　\ �� �VLQ[

　��[�S�では�\ �����であるから，曲線�&�はこの範囲

　で上に凸であり，接線�A�は曲線�&�の上側にある。

　よって　　

　　6 � 
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� ��SD � 
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　��D�S�のとき，VLQD!��であるから，この範囲で�6 � � 
D  ��となるのは，D 
S

�

　のときである。
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6 � � 
D � � �

6 � 
D � 極小 �

　ゆえに，��D�S�における増減表は右のようにな

　る。

　よって，6 � 
D �は�D 
S

�
�のとき最小値�6� �

S

�
 S���

　をとる。

I � 
[  
[H �[�について，次の問いに答えよ。23

���　W�は実数とする。このとき，曲線�\ I � 
[ �と���直線�[ W，[ W���および�[�軸で囲

　まれた図形の面積�6 � 
W �を求めよ。

���　6 � 
W �を最小にする�W�の値とその最小値を求めよ。
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次の曲線または直線で囲まれた部分の面積�6�を求めよ。ただし，����の�D�は���D���を満26

たす定数とする。
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\ [�であるとき，次の各問いに答えよ。

���　D�と�E�の値を求めよ。
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面積を求めよ。なお，領域が複数ある場合は，その面積の総和を求めよ。
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