
自然数�Q�に対して， QD  ' �
S
�

�QWDQ [G[ �とする。１

���　 �D �を求めよ。　　　　���　 �Q �D �を� QD �で表せ。　　　　���　
�Q 

OLP QD �を求めよ。

自然数�Q�に対して， Q,  ' �
� Q[

�� [
G[�とする。２

���　 �, �を求めよ。また， Q, � �Q �, �を�Q�で表せ。

���　不等式�
�

�� 
�Q �
� Q, �

�

�Q �
�が成り立つことを示せ。

���　
�Q 

OLP

 N �

Q

&

�N �
� 
��

N
 ORJ� �が成り立つことを示せ。

次の極限値を求めよ。３

���　
�[ 

OLP' �

[
�WWH GW　　　　　　　　　　　　���　

�[ �
OLP
�

[ ' �
[

( �� � �FRV W GW
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���　�ア�　��[�H�において，不等式�ORJ[�
[

H
�が成り立つことを示せ。４

　�イ�　自然数�Q�に対し，
�Q 

OLP ' �

H
�[ Q
� 
ORJ[ G[�を求めよ。

���　
�[ �
OLP

�

�[ ' �
[ �WWH GW�を求めよ。

I � 
[ ，J � 
[ �はともに区間�D�[�E���D 
�E �で定義された連続な関数とする。５

このとき，不等式�
�

� �' D

E

I � 
[ J � 
[ G[ �� �' D

E
�

� �I � 
[ G[ � �' D

E
�

� �J � 
[ G[ �　……�� �$

が成立することを示せ。また，等号はどのようなときに成立するかを述べよ。

QD  ��
�

�
�
�

�
��……�� �Q �

� 
��
�

Q
，D ' �

� �

�� [
G[�とする。６

QD �D �' �
�

Q[ G[�であることを示し，
�Q 

OLP QD �を求めよ。



自然数�Q�に対して， Q5 � 
[  
�

�� [
����[� �[ ��……� �� Q

� 
�� Q[ �とする。７

���　
�Q 

OLP ' �

�

Q5 � 

�[ G[�を求めよ。

���　無限級数���
�

�
�
�

�
�
�

�
��……�の和を求めよ。

Q�を���以上の自然数とする。８

���　定積分�' �
Q

[ORJ[G[�を求めよ。

���　次の不等式を証明せよ。

　　　　
�

�
�Q ORJQ�

�

� �
�Q 
�� �

 N �

Q

& NORJN�
�

�
�Q ORJQ�

�

� �
�Q 
�� �QORJQ

���　
�Q 

OLP

ORJ � 
････�� �� �� �……� QQ
�Q ORJQ

�を求めよ。

数列�� �Q, �を関係式� �,  ' �
�
�[H G[， Q,  

�

Q� '�
�

Q[ �[H G[ ���Q 
 �，�，�，…… �で定めると９

き，次の問いに答えよ。

���　 �, ， �, �を求めよ。

���　Q���のとき， Q, � �Q �, �を�Q�の式で表せ。

���　
�Q 

OLP Q, �を求めよ。

���　� Q6  
 N �

Q

&
�

N�
�とするとき，

�Q 

OLP Q6 �を求めよ。



D!��に対し，I � 
D  
�W ��
OLP ' W

�

�D[ [ORJ[ G[�とおくとき，次の問いに答えよ。必要なら10

ば，
�W ��
OLP QW ORJ W ����Q �，�，……��を用いてよい。

���　I � 
D �を求めよ。

���　D�が正の実数全体を動くとき，I � 
D �の最小値とそのときの�D�の値を求めよ。

実数�[�に対して，[�を超えない最大の整数を�� �[ �で表す。11

Q�を正の整数とし� QD  
 N �

Q

&
� �( �� �Q �N

�Q
�とする。このとき，

�Q 

OLP QD �を求めよ。

��[���となる実数�[�に対し，J � 
[  �
[ � 
�� �[ ��のとき

�� [ � 
�� �[ ��のとき
�と定める。次に，実数�12

[���に対し，�P�[��P���となる整数�P�を用いて�I � 
[  J � 
�[ �P �と定める。

更に， QD  ' �
�Q

�[H I � 
[ G[�で数列�� �QD �を定める。

���　\ I � 
[ �の���[���におけるグラフをかけ。　　���　 �D �を求めよ。

���　 QE  �Q �D � QD �とおく。 QE �を�Q�の式で表せ。　　���　極限値�
�Q 

OLP QD �を求めよ。



自然数�Q�に対して， QD  ' �
S
�

�QWDQ [G[ �とする。１

���　 �D �を求めよ。　　　　���　 �Q �D �を� QD �で表せ。　　　　���　
�Q 

OLP QD �を求めよ。

S　���　 �D  ��
S

�
　　���　 �Q �D  � QD �

�

��Q �
　　���　�

 解説

���　 �D  ' �
S
�

�WDQ [G[ ' �
S
�

� ��
�
�FRV [

� G[ 
�

S
�

� ��WDQ[ [  ��
S

�

���　 �Q �D  ' �
S
�

��Q �WDQ [G[ ' �
S
�

�QWDQ [ �WDQ [G[ ' �
S
�

�QWDQ [� ��
�
�FRV [

� G[

　　　　 ' �
S
�

･�QWDQ [
�
�FRV [

G[�' �
S
�

�QWDQ [G[ 
�

S
�

� �
�

��Q �
��Q �WDQ [ � QD

　　　　 � QD �
�

��Q �

���　��[�
S

�
�のとき　　��WDQ[��　　　よって　　�� ��Q �WDQ [� �QWDQ [

　ゆえに　　��' �
S
�

��Q �WDQ [G[�' �
S
�

�QWDQ [G[　　　よって　　�� �Q �D � QD

　ゆえに，����の結果から　　� QD �
�

��Q �
��　　　よって　　�� QD �

�

��Q �

　ここで，
�Q 

OLP

�

��Q �
 ��であるから　　

�Q 

OLP QD  �

自然数�Q�に対して， Q,  ' �
� Q[

�� [
G[�とする。２

���　 �, �を求めよ。また， Q, � �Q �, �を�Q�で表せ。

���　不等式�
�

�� 
�Q �
� Q, �

�

�Q �
�が成り立つことを示せ。

���　
�Q 

OLP

 N �

Q

&
�N �

� 
��

N
 ORJ� �が成り立つことを示せ。

S　���　 �,  ��ORJ�， Q, � �Q �,  
�

�Q �
　　���　略　　���　略

 解説

���　 �,  ' �
� [

�� [
G[ ' �

�

� ���
�

�� [
G[ 

�

�

� ��[ ORJ � 
�� [  ��ORJ�

　　 Q, � �Q �,  ' �
�

� ��
Q[

�� [

�Q �[

�� [
G[ ' �

�
Q[ G[ 

�

�

� �
�

�Q �
�Q �[  

�

�Q �

���　��[���のとき　　����[��

　よって　　
�

�
�

�

�� [
��　　　ゆえに　　

Q[

�
�

Q[

�� [
� Q[

　よって　　' �
� Q[

�
G[�' �

� Q[

�� [
G[�' �

�
Q[ G[

　ここで　　' �
� Q[

�
G[ 

�

�� 
�Q �
，' �

�
Q[ G[ 

�

�Q �

　したがって　　
�

�� 
�Q �
� Q, �

�

�Q �

���　����より，� ORJ�� �, ，
�

�Q �
 Q, � �Q �, �であるから

　
 N �

Q

&
�N �

� 
��

N
 ��

�

�
�
�

�
�
�

�
��……��

�Q �
� 
��

Q

　　　　　　�� �ORJ� 
� �, �� �, 
� �, �� �, 
� �, �� �, 
� �, ��……�� �Q �
� 
�� � �Q �, 
� Q,

　　　　　　�� ORJ�� �Q �
� 
�� Q,

　����において　　
�Q 

OLP

�

�� 
�Q �
 

�Q 

OLP

�

�Q �
 �

　よって，
�Q 

OLP Q,  ��であるから　　

�Q 

OLP

 N �

Q

&

�N �
� 
��

N
 ORJ�

次の極限値を求めよ。３

���　
�[ 

OLP' �

[
�WWH GW　　　　　　　　　　　　���　

�[ �
OLP
�

[ ' �
[

( �� � �FRV W GW

S　���　
�

H
　　���　�

 解説

���　' �
[

�WWH GW ' �
[

W� 
� �WH �GW 
�

[

� �� �WWH �' �
[
�WH GW � �[[H � ��H �

�

[

� �
�WH

　　　　　　 �
[
[H
�
�
[H
�
�

H

　ここで，I � 
[  
[H � �[ ���[ 
�� �とおくと　

　　　　　I � � 
[  
[H ��[，　I �� � 
[  

[H ��

　I �� � 
[ �は単調に増加し，[���のとき　　I �� � 
[ �H��!�

　ゆえに，I � � 
[ �は�[���で単調に増加する。

　このことと�I � � 
�  H��!��から，[���のとき　　I � � 
[ !�

　よって，I � 
[ �は�[���で単調に増加する。

　このことと�I � 
�  H��!��から，[���のとき　　I � 
[ !�

　したがって，[���のとき　　 [H � �[ !�　すなわち　 [H ! �[

　ゆえに　　��
[
[H
�
�

[
　　　　

�[ 

OLP
�

[
 ��であるから　　

�[ 

OLP

[
[H
 �

　以上から　　
�[ 

OLP' �

[
�WWH GW 

�[ 

OLP� ����

[
[H

�
[H

�

H
 
�

H

���　' ( �� � �FRV W GW ) � 
W �& ��&�は積分定数��とすると　　) � � 
W  ( �� � �FRV W

　したがって　　
�[ �
OLP
�

[ ' �
[

( �� � �FRV W GW 
�[ �
OLP

�) � 
[ ) � 
�

�[ �
 ) � � 
�  �

���　�ア�　��[�H�において，不等式�ORJ[�
[

H
�が成り立つことを示せ。４

　�イ�　自然数�Q�に対し，
�Q 

OLP ' �

H
�[ Q
� 
ORJ[ G[�を求めよ。

���　
�[ �
OLP

�

�[ ' �
[ �WWH GW�を求めよ。

S　���　�ア�　略　　�イ�　�　　���　�

 解説

���　�ア�　I � 
[  
[

H
�ORJ[ �とおくと　　I � � 
[  

�

H
�
�

[
 
�[ H

H[

　　��[�H�において　　I � � 
[ ��

　　よって，I � 
[ �は���[�H�において単調に減少する。

　　また　　I � 
H  �

　　ゆえに，��[�H�において　　I � 
[ ��　すなわち　ORJ[�
[

H

　�イ�　�ア��より，��[�H�において　　��ORJ[�
[

H

　　よって　　�� Q
� 
ORJ[ �

Q

� �
[

H
　　　ゆえに　　�� �[ Q

� 
ORJ[ � �[
Q

� �
[

H

　　よって　　��' �
H

��[ Q
� 
ORJ[ G[ ' �

H
�[

Q

� �
[

H
G[

　　ここで　　' �
H
�[

Q

� �
[

H
G[ 

�
QH ' �

H
�Q �[ G[ 

�
QH �

H

� �
�

�Q �
�Q �[

　　　　　　　　　　　　�� 
�

QH � 
�Q �
�

�Q �H 
��  
�

�Q � �
�H ��
�
QH

　　
�Q 

OLP

�

�Q � � ���H
�
QH
 ��であるから　　

�Q 

OLP  ' �

H
�[ Q
� 
ORJ[ G[ �

���　'
�WWH GW ) � 
W �& ��&�は積分定数��とすると　　) � � 
W  

�WWH

　よって　　
�[ �
OLP

�

�[ ' �
[ �WWH GW 

�[ �
OLP� �･

�

�[ �

[

� �) � 
W  
�[ �
OLP� �･

�

�

�) � 
[ ) � 
�

�[ �

　　　　　　　　　　　　　 
�

�
) � � 
�  �

I � 
[ ，J � 
[ �はともに区間�D�[�E���D 
�E �で定義された連続な関数とする。５

このとき，不等式�
�

� �' D

E

I � 
[ J � 
[ G[ �� �' D

E
�

� �I � 
[ G[ � �' D

E
�

� �J � 
[ G[ �　……�� �$

が成立することを示せ。また，等号はどのようなときに成立するかを述べよ。

S　証明略，常に�I � 
[  ��または�J � 
[  ��または�I � 
[  NJ � 
[ �となる定数�N�が

　　　存在するとき

 解説

S ' D
E

�
� �J � 
[ G[，T ' D

E

I � 
[ J � 
[ G[，U ' D

E
�

� �I � 
[ G[�とおく。区間�� �D，E �において

>�@　常に�I � 
[  ��または�J � 
[  ��のとき

　不等式�� �$ �の両辺はともに���となり，� �$ �が成り立つ。

>�@　>�@�の場合以外のとき

　W�を任意の実数とすると

　' D

E
�

� ��I � 
[ WJ � 
[ G[ ' D

E

� ����� �I � 
[ �WI � 
[ J � 
[
�W �
� �J � 
[ G[ �SW ��TW�U

　 �
� ��I � 
[ WJ � 
[ ���であるから　　' D

E
�

� ��I � 
[ WJ � 
[ G[��

　すなわち，任意の実数�W�に対して� �SW ��TW�U���が成り立つ。

　ここで�S!��であるから，W�の���次方程式� �SW ��TW�U ��の判別式を�'�とすると

　　　　　
'

�
 �T �SU��　　　　ゆえに　　 �T �SU

>�@，>�@�から　　 �T �SU　　　　すなわち，不等式�� �$ �が成り立つ。

また，>�@�において，不等式�� �$ �で等号が成り立つとすると，' ��であるから，��次方

程式� �SW ��TW�U ��は重解�D�をもつ。よって， �SD ��TD�U ��であるから

　　　　　' D

E
�

� ��I � 
[ DJ � 
[ G[ ���……�� �%

ここで，区間�� �D，E �で常に� �
� ��I � 
[ DJ � 
[ ���であり，� �% �から常に

　　　　　I � 
[ �DJ � 
[  �　すなわち　I � 
[  �DJ � 
[

以上から，�� �$ �で等号が成り立つのは区間�� �D，E �で

　　常に�I � 
[  ��または�J � 
[  ��または�I � 
[  NJ � 
[ �となる定数�N�が存在するとき

に限る。
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QD  ��
�

�
�
�

�
��……�� �Q �

� 
��
�

Q
，D ' �

� �

�� [
G[�とする。６

QD �D �' �
�

Q[ G[�であることを示し，
�Q 

OLP QD �を求めよ。

S　証明略，ORJ�

 解説

N �，�，……，Q�に対して　　' �
�

�N �[ G[ 
�

�

� �
N[

N
 
�

N

また，��[���では��[
�，����[���であり

　 QD  
 N �

Q

&
�N �

� 
��
�

N
 

 N �

Q

&
�N �

� 
�� ' �
�

�N �[ G[ ' �
�

 N �

Q

&
�N �

� 
�[ G[ ' �
� �� Q

� 
�[

�� [
G[

よって　　 QD �D  ' �
�

� ��
�� Q

� 
�[

�� [

�

�� [
G[

　　　　　　　　�� ' �
� � Q

� 
�[

�� [
G[ �' �

� � Q
� 
�[

�� [
G[

　　　　　　　　�� ' �
� Q[

�� [
G[�' �

�
Q[ G[

' �
�

Q[ G[ 
�

�

� �
�Q �[

�Q �
 

�

�Q �
�であるから　　�� QD �D �

�

�Q �

�Q 

OLP

�

�Q �
 ��であるから　　

�Q 

OLP �QD D  �

したがって　　
�Q 

OLP QD  D ' �

� G[

�� [
 

�

�

� �ORJ � 
�� [  ORJ�

自然数�Q�に対して， Q5 � 
[  
�

�� [
����[� �[ ��……� �� Q

� 
�� Q[ �とする。７

���　
�Q 

OLP ' �

�

Q5 � 

�[ G[�を求めよ。

���　無限級数���
�

�
�
�

�
�
�

�
��……�の和を求めよ。

S　���　�　　���　
S

�

 解説

���　 Q5 � 
[ �の第���項の分母は���でないから　　[
��

　 Q5 � 
[ �の第���項の�� �　 �の中は，初項��，公比��[，項数�Q���の等比数列の和である

　から　　　 Q5 � 
[  
�

�� [
�
�� �Q �

� 
�� �Q �[

�� [
 

�Q �
� 
�� �Q �[

�� [

　ゆえに　　 ' �
�

Q5 � 

�[ G[ �' �

�

Q5 � 

�[ G[ ' �

� ��Q �[

�� �[
G[

　
��Q �[

�� �[
� ��Q �[ �であり，等号は常には成り立たないから

　　　' �
� ��Q �[

�� �[
G[�' �

�
��Q �[ G[ 

�

�

� �
��Q �[

��Q �
 

�

��Q �

　したがって　　 ' �
�

Q5 � 

�[ G[ �

�

��Q �

　
�Q 

OLP

�

��Q �
 ��であるから　　

�Q 

OLP ' �

�

Q5 � 

�[ G[ �

���　無限級数の初項から第�Q���項までの部分和を� �Q �6 �とすると

　　　　 �Q �6  ��
�

�
�
�

�
�
�

�
��……�� Q

� 
��
�

��Q �

　' �
�

Q5 � 

�[ G[ ' �

� G[

�� �[
�' �

�

� ����� �[ �[ �…… �� Q
� 
�� �Q[ G[

　ここで，, ' �
� G[

�� �[
，- ' �

�

� ����� �[ �[ �…… �� Q
� 
�� �Q[ G[�とする。

[ �� ���

K �� �
S

�

　[ WDQK �とおくと　　G[ 
GK
�FRV K

　[�と�K�の対応は右のようになる。

　　　, ' �
S
� �

�� �WDQ K
･

GK
�FRV K
 ' �

S
�

GK  
�

S
�

� �K
S

�

　　　- 
�

�

� ����[
�[

�

�[

�
�…… �� Q

� 
��
��Q �[

��Q �

　　　�� ��
�

�
�
�

�
��……�� Q

� 
��
�

��Q �

　であるから

　　' �
�

Q5 � 

�[ G[ 

S

�
����

�

�
�
�

�
��……� �� Q

� 
��
�

��Q �
 

S

�
� �Q �6

　����より，
�Q 

OLP ' �

�

Q5 � 

�[ G[ ��であるから　　

�Q 
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