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 解説

���　 �\ ���であるから　　 �[ �[ 
�� ��　　　　したがって　　[���

　このとき，\ �[( �[ � �であるから，求めるグラフは�\ [( �[ � �と�

　\ �[( �[ � �のグラフを合わせたものである。

　まず，\ [( �[ � ��……�①�のグラフについて考える。

　\ ��のとき　　[ ��，�

　よって，グラフは原点���，���と点����，���を通る。

　[!���のとき，①�から

　　　\ � �･( �[ � �[･
�

�( �[ �
 ( �[ � �
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�( �[ �
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�
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�[ � ��･�( �[ � ��
��[ �

( �[ �
 

��[ �

�� 
�[ � ( �[ �

　\ � ��とすると　　[ �
�

�
　　　　また，[!���では　　\ ��!�

　関数�①�について，\�の増減とグラフの凹凸は次の表のようになる。ただし，
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�[ ��� �
OLP \ � �
�である。

　\ �[( �[ � �のグラフは，[�軸に関して�①�のグラフと対称である。

　よって，求めるグラフは右上の図のようになる。

���　方程式で�[�を��[�に，\�を��\�におき換えても� �[ �\  �[ � �\ �は成り立つから，グラ

　フは�[�軸，\�軸，原点に関して対称である。

　ゆえに，[��，\���の範囲で考える。

　 �[ �\  �[ � �\ �から　　 �\  
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��[ �
　　　よって　　\ 
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　\�の増減とグラフの凹凸は右の表のようになる。

　また　　
�[ 

OLP\ 

�[ 

OLP

�

) ��
�
�[

 �

　よって，直線�\ ��は漸近線である。

　ゆえに，対称性により，求めるグラフは右の図のよう

　になる。

�S�K�S�とする。次の式で表された曲線の概形をかけ��凹凸は調べなくてよい�。６

���　[ VLQK，\ FRV�K　　　　　���　[ �� 
�FRVK FRVK，\ �� 
�FRVK VLQK
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 解説

[ I � 
K ，\ J � 
K �とする。

���　VLQK，FRV�K �の周期はそれぞれ��S，
�S

�
�である。

　I � 
�K  �I � 
K ，J � 
�K  J � 
K �であるから，曲線は�\�軸に関して対称である。

　したがって，��K�S��……�①�の範囲で考える。

　また　　I � � 
K  FRVK，J � � 
K  ��VLQ�K

　①�の範囲で�I � � 
K  ��を満たす�K�の値は　　K 
S

�

　J � � 
K  ��を満たす�K�の値は，VLQ�K ������K��S��から

　　　　　�K �，S，�S，�S　すなわち　K �，
S

�
，
�

�
S，S

　①�の範囲における�K�の値の変化に対応した�[，\�の値の変化は次の表のようになる。

K � …
S

�
…

S

�
…

�

�
S … S

I � � 
K � � � � � � � � �

[ � � (�
�

� � � (�
�

� �

J � � 
K � � � � � � � � �

\ � � �� � � � � � ��

� 
グラフ � 
� � 
� � 
���� � 
�����

　また，①�の範囲で�\ ��となるのは，K 
S

�
�の他に�K 

S

�
，
�

�
S�の場合があり

　　　　　　K 
S

�
，
�

�
S�のとき　　� 
[，\  � �

�

�
，�

　よって，対称性を考えると，曲線の概形は右下の図のようになる。
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���　I � 
K ，J � 
K �の周期はともに��S�である。

　I � 
�K  I � 
K ，J � 
�K  �J � 
K �であるから，曲線は�[�軸に関して対称である。

　よって，��K�S��……�①�の範囲で考える。

　I � � 
K  �VLQKFRVK��� 
�FRVK VLQK �VLQK �� 
��FRVK

　J � � 
K  �
�VLQ K��� 
�FRVK FRVK �� 
�� �FRV K ��� 
�FRVK FRVK

　　　�� � �FRV K�FRVK�� �FRVK 
�� ��FRVK 
��



　①�の範囲で�I � � 
K  ��を満たす�K�の値は　　K �，
�

�
S，S

　　　　　　��J � � 
K  ��を満たす�K�の値は　　K 
S

�
，S

　①�の範囲における�K�の値の変化に対応した�[，\�の値の変化は次の表のようになる。
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　よって，対称性を考えると，曲線の概形は右下の図のようになる。
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　V　この問題の解答における増減表の��，�，�，�は，次のことを表す。

　　　　　　　�：[�の値が増加する　　�：[�の値が減少する

　　　　　　　�：\�の値が増加する　　�：\�の値が減少する

D!�，E!��とし，I � 
[  ORJ
�[ D

�E [
�とする。曲線�\ I � 
[ �はその変曲点に関して対称で７

あることを示せ｡
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 解説

対数の真数は正の数であるから　　
�[ D

�E [
!�

これと�D!�，E!��から　　�D�[�E

このとき　　\ ORJ � 
�[ D �ORJ � 
�E [

よって　　　\ � 
�

�[ D
�
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�E [
 

�D E
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S 
�E D

�
�とする。\ �� ��とすると，[ S�であり

　　　　　�D�[�S�で　\ ����，　S�[�E �で　\ ��!�

[ S�のとき�\ ��であり，点�� 
S，� �が変曲点である。

点��S，���が原点にくるように，曲線�\ I � 
[ �を�[�軸方向に��S�だけ平行移動すると

　　　\ ORJ � 
��[ S D �ORJ � 
��E [ S  ORJ � ��[
�D E

�
�ORJ� ���[

�D E

�

この曲線の方程式を�\ J � 
[ �とすると，J � 
�[  �J � 
[ �が成り立つから，曲線�\ J � 
[ �

は原点に関して対称である。

したがって，曲線�\ I � 
[ �はその変曲点�� 
S，� �に関して対称である。

第���次導関数を利用して，次の関数の極値を求めよ。８
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 解説

与えられた関数を�I � 
[ �とする。

���　I � � 
[  
�[ �� �[ �[�� �[ �[ 
�� ��[ 
��  �

�[ 
�� �[ 
��  �[ 
�� �[ 
�� �[ 
��

　　I �� � 
[  �
�[ ��[��

　I � � 
[  ��とすると　　[ ��，�，�

　I �� � 
��  �!�，I �� � 
�  ����，I �� � 
�  �!��であるから，I � 
[ �は
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　をとる。

���　I � � 
[  
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�VLQ[

　　I �� � 
[  
[H �FRV[ 
�VLQ[ � [H ��VLQ[ 
�FRV[  �� [H VLQ[

　I �� 
[  ��とすると　　VLQ[�FRV[ �　　　したがって　　(� VLQ� ��[
S

�
 �

　��[��S�より，�
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S�であるから
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　をとる。


