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関数�I � 
[  
���D[ E[ F

��[ �
�は�[ ���で極小値�

�

�
，[ ��で極大値���をとる。このとき，４

定数�D，E，F�の値を求めよ。

次の関数の最大値，最小値を求めよ。���，����では���[��S�とする。５
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次の関数に最大値，最小値があれば，それを求めよ。６
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関数�I � 
[  
DVLQ[

�FRV[ �
�����[ 
�S �の最大値が�(� �となるように定数�D�の値を定めよ。７ 関数�I � 
[  

�[ D

��[ �
���D 
!� �について，次のものを求めよ。８

���　I � � 
[  ��となる�[�の値

���　����で求めた�[�の値を�D，E���D 
�E �とするとき，E�と���の大小関係

���　��[���における�I � 
[ �の最大値が���であるとき，D�の値

��点�2�� 
�，� ，$�� �
�

�
，� ，3�� 
FRVK，VLQK �と点�4�が，条件�24 $4 34�を満たす。９

ただし，��K�S�とする。

���　点�4�の座標を求めよ。

���　点�4�の�\�座標の最小値とそのときの�K�の値を求めよ。



半径���の球に，側面と底面で外接する直円錐を考える。この直円錐の体積が最小となる10

とき，底面の半径と高さの比を求めよ。
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 解説
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　よって，\�の増減表は右のようになる。

　したがって，
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�
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次の関数の極値を求めよ。２
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　よって　　N �
�

�

���　I � 
[ �が極値をもつとき，I � � 
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 解説
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