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D� 
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�� FRVK

[�の関数�\�が，W，K�を媒介変数として，次の式で表されるとき，導関数�
G\

G[
�を�W，K�の関９

数として表せ。
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 解説

���　
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��のとき　　
G\
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��W �

� �W

���　W
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G[

GW
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W

( �� �W
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 �W
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�
W
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���　FRV[ NFRV\ �����[�S，��\�S，N�は�N 
!��の定数 �が成り立つとき，
G\

G[
�を�10

　[�の式で表せ。

���　サイクロイド�[ W�VLQ W，\ ��FRVW �について，
�G \

G �[
�を�W�の関数として表せ。
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 解説

���　FRV[ NFRV\ �の両辺を�[�で微分すると　　�VLQ[ � 
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G[
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