
次の関数の連続性について調べよ。なお，����では関数の定義域もいえ。１

���　I � 
[  
�[ �

��[ �
　　　　　���　���[���で　I � 
[  ��ORJ

�

[
��[ 

� ，I � 
�  �

���　��[��S�で　I � 
[  � �FRV[ 　　ただし，>　@�はガウス記号。�

無限級数�[�
[

�� [
�

[
�

� 
�� [
��……��

[
�Q �

� 
�� [
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���　この無限級数が収束するような�[�の値の範囲を求めよ。

���　[�が�����の範囲にあるとき，この無限級数の和を�I � 
[ �とする。関数�\ I � 
[ �のグラ

　フをかき，その連続性について調べよ。
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����Q[ ��Q �[ D �[ E[

��Q[ �
�を求めよ。３

���　����で定めた関数�I � 
[ �がすべての�[�について連続であるように，定数�D，E�の値を定

　めよ。
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���　次の方程式は，与えられた範囲に少なくとも���つの実数解をもつことを示せ。４
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���　関数�I � 
[ ，J � 
[ �は区間�� �D，E �で連続で，I � 
[ �の最大値は�J � 
[ �の最大値より大

　きく，I � 
[ �の最小値は�J � 
[ �の最小値より小さい。このとき，方程式�I � 
[  J � 
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　は，D�[�E�の範囲に解をもつことを示せ。

関数�I � 
[  
�Q 

OLP

�����Q �D[ �[ E[ F

��Q[ �
�について，次の問いに答えよ。ただし，D，E，F�は５

定数で，D!��とする。

���　関数�I � 
[ �が�[�の連続関数となるための定数�D，E，F�の条件を求めよ。

���　定数�D，E，F�が�����で求めた条件を満たすとき，関数�I � 
[ �の最大値とそれを与え

　る�[�の値を�D�を用いて表せ。

���　定数�D，E，F�が�����で求めた条件を満たし，関数�I � 
[ �の最大値が�
�

�
�であるとき，

　定数�D，E，F�の値を求めよ。

関数�I � 
[ �が連続で�I � 
�  ��，I � 
�  �，I � 
�  ��のとき，方程式�I � 
[  
�[ �は���[���６

の範囲に少なくとも���つの実数解をもつことを示せ。
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 解説
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 解説
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したがって，方程式�I � 
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