
次の無限級数の収束，発散について調べ，収束すればその和を求めよ。１

���　
�

･� �
�
�

･� �
�

�

･� ��
�

�

･�� ��
��……　　　　���　

 Q �




&
�

��Q �

���　
 Q �




&
�

�( ��Q � ( ��Q �
　　　　　　　　　������　

 Q �




&
�( �Q � (Q

( ��Q Q

次の無限級数は発散することを示せ。２

���　�����������……　　　　　　　������　��
�

�
�
�

�
�
�

�
��……　　　　　　　

���　 �VLQ
S

�
� �VLQ S� �VLQ

�

�
S� �VLQ �S��……

���　次の無限等比級数の収束，発散を調べ，収束すればその和を求めよ。３

　�ア�　(� ����(� ��……　　　　　　����イ�　���(� ����……

���　無限級数�
 Q �




&
Q

� �
�

�
VLQ

QS

�
�の和を求めよ。

無限級数��[ 
�� �
[� 
�[ �

��[ �
�

�[ � 
�[ �
�

� 
��[ �
��…… ���[ 

� �について４

���　無限級数が収束するときの実数�[�の値の範囲を求めよ。

���　無限級数の和�6�を求めよ。
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の円の中心を� �2 �とする。線分� �22 �と円� �2 �との

交点を中心とし，��辺�2;，2<�に接する円を� �2 �

とする。以下，同じようにして，順に円� �2 ，……，

Q2 ，……�を作る。このとき，円� �2 ， �2 ，……�の

面積の総和を求めよ。

７

初項，公比ともに実数の無限等比級数があり，その和は���で，各項の���乗からなる無限８

等比級数の和は���である。初めの無限等比級数の公比を求めよ。

次の無限級数の収束，発散を調べ，収束すればその和を求めよ。９
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���　級数�①�の初項から第�Q�項までの部分和を� Q6 �とするとき， ��Q �6 ， �Q6 �をそれぞれ求

　めよ。

���　級数�①�の収束，発散を調べ，収束すればその和を求めよ。

���　すべての自然数�Q�に対して，� Q� !Q�であることを示せ。11

���　数列の和� Q6  
 N �

Q

& N
�N �

� �
�

�
�を求めよ。

���　
�Q 

OLP Q6 �を求めよ。

�� �K
S

�
�とする。無限級数�

 Q �




&
QFRV K
QVLQ K
�が収束するのは，K�の値の範囲が�

ア

� �のと12

きである。また，そのときの級数の和を�WDQK �を用いて表すと，
イ

� �である。



次の無限級数の収束，発散について調べ，収束すればその和を求めよ。１

���　
�

･� �
�
�

･� �
�

�

･� ��
�

�

･�� ��
��……　　　　���　

 Q �




&
�

��Q �

���　
 Q �




&
�

�( ��Q � ( ��Q �
　　　　　　　　　������　

 Q �




&
�( �Q � (Q

( ��Q Q

S　���　収束，和�
�

�
　　���　収束，和�

�

�
　　���　発散　　���　収束，和��

 解説

初項から第�Q�項� QD �までの部分和を� Q6 �とする。

���　 QD  
�

� 
��Q � � 
��Q �
 
�

� �
�

��Q � ��
�

��Q �
�であるから

　　 Q6  
�

� �
�

� ��
�

�
�
�

� �
�

� ��
�

�
��……��

�

� �
�

��Q � ��
�

��Q �

　　　 
�

� �� ��
�

��Q �
　　　　よって　　

�Q 

OLP Q6  

�

�

　ゆえに，この無限級数は収束して，その和は�
�

�
�である。

���　 QD  
�

��Q �
 

�

� 
�Q � � 
�Q �
 
�

� �
�

�Q � ��
�

�Q �
���Q 
�� �であるから

　　 Q6  
�

� �
�

� ��
�

�
�
�

� �
�

� ��
�

�
��……��

�

� �
�

�Q � ��
�

Q
�
�

� �
�

�Q � ��
�

�Q �

　　　 
�

� ���
�

�
�
�

Q ��
�

�Q �
　　　　よって　　

�Q 

OLP Q6  

�

�

　ゆえに，この無限級数は収束して，その和は�
�

�
�である。

���　 QD  
�

�( ��Q � ( ��Q �
 

�( ��Q � ( ��Q �

�� 
��Q � � 
��Q �
 �

�

� �(
��Q � 
�( ��Q � �

　であるから

　　 Q6  �
�

� ��(
� 
�(� ��(� 
�(� ��……��� 
�( ��Q � ( ��Q �

　　　　　　　　　　　　　　　　　　　　　　　　� �� 
�( ��Q � ( ��Q �

　　　 
�

� �( ��Q � 
�� 　　　　よって　　
�Q 

OLP Q6  


　ゆえに，この無限級数は発散する。

���　 QD  
�( �Q � (Q

( ��Q Q
 
�

(Q
�

�

( �Q �
�であるから

　　 Q6  �� ��
�

(�
��

�

(� ��
�

(�
��……��� ��

�

( �Q �

�

(Q
��

�

(Q ��
�

( �Q �

　　　� ��
�

( �Q �
　　　　よって　　

�Q 

OLP Q6  �
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