
次の関数の逆関数を求めよ。また，そのグラフをかけ。１

���　\ ��[���　　　　　������　\ 
�[ �

�[ �
　　　　　　　���　\ �

�

� �
�[ 
�� ���[ 
��

���　\ �( ��[ �　　　　������　\ �ORJ � 
�[ � �����[ 
��

���　D
��とする。関数�I � 
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�D �について， ��I � 
[ と�I � 
[ �が一致するような定２

　数�D�の値を求めよ。

���　関数�\ 
�D[ E

�[ �
��E 

�D �のグラフは点�� 
�，� �を通り，また，この関数の逆関数は

　もとの関数と一致する。定数�D，E�の値を求めよ。

I � 
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�[ ��[�N���[ 
�� �の逆関数を� ��I � 
[ �とする。\ I � 
[ �のグラフと�\ 
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グラフが異なる���点を共有するとき，定数�N�の値の範囲を求めよ。
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[ �とする。\ I � 
[ �のグラフと�\ 
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のグラフの共有点の座標を求めよ。

関数�  I � 
[
�D[ E

�F[ G
��D，E，F，G�は実数，F
���がある。５

���　I � 
[ �の逆関数��
��I � 
[ �が存在するための条件を求めよ。

���　����の条件が満たされるとき，常に�  ��I � 
[ I � 
[ �が成り立つための条件を求めよ。

[�の関数�I � 
[  D�
�

�[� �
�を考える。ただし，D�は実数の定数である。６

���　D � �のとき，I � 
�[  �I � 
[ �が常に成り立つ。

���　D�が�����の値のとき，I � 
[ �の逆関数は�
��I � 
[  �ORJ � �である。
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 解説
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　両辺の係数を比較して　　　D ��，� �D �E ���E，�DE �E

　D ���は第���式，第���式を満たし，このとき，②�から　　E �

　したがって，求める�D，E�の値は　　D ��，E �

　このとき，①�と�③�の定義域はともに�[
���となり一致する。
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グラフが異なる���点を共有するとき，定数�N�の値の範囲を求めよ。
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���がある。５
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