
次の等差数列の公差を求めよ。また， � �に適する数を求めよ。１.

���　�，�，�， � ， � ，……　　　　　�����　�， � ，�，�， � ，……

第���項が���，第���項が����である等差数列の初項は�
ア

� �，公差は�
イ

� �である。２.

また，第����項は�
ウ

� �，���は第�
エ

� �項である。

次のような等差数列の和を求めよ。３.

���　初項��，末項���，項数���　　　　　　������　初項���，末項��，項数���

次の等比数列の公比を求めよ。また， � �に適する数を求めよ。４.

���　�，�，��， � ， � ，……　　　　���　 � ，�，��(�， � ，……

第���項が����，第���項が������である等比数列の一般項を求めよ。５.

次のような等比数列の初項から第�Q�項までの和� Q6 �を求めよ。６.
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次の和を求めよ。８.
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和� Q6  ���･���･
�� ���･ �� ��……����Q 
�� ･ �Q �� ��を求めよ。９.
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数列��，�，�，��，��，……�の一般項� QD �を階差数列を用いて求めよ。10.

初項から第�Q�項までの和� Q6 �が， Q6  
�Q ��Q�で表される数列�� �QD �の一般項を求めよ。11.

偶数の数列��，�，�，……�を次のように，順に���個，��個，��個，……�の群に分ける。12.

　　　　� �� ，� ��，� ，� ��，��，�� ，� ���，��，��，�� ，……

���　第�Q�番目の群の最後の数を求めよ。

���　第�Q�番目の群に入る偶数の和を求めよ。

次の条件によって定まる数列�� �QD �の一般項を求めよ。13.

���　 �D  �， �Q �D  QD ��　　　　　　　　�����　 �D  ��， �Q �D  � QD

次の条件によって定まる数列�� �QD �の一般項を求めよ。14.

����　 �D  �， �Q �D  QD �Q��　　　　���　 �D  �， �Q �D  � QD ��　

Q�が自然数のとき，� �Q �Q��は���の倍数であることを数学的帰納法を用いて証明せよ。15.



次の等差数列の公差を求めよ。また， � �に適する数を求めよ。１.
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S　���　公差��， � �に適する数：��，��　　

　　　���　公差���， � �に適する数：�，�

 解説

与えられた数列を�� �QD �とする。

���　公差は　　��� �

　よって　　　 �D  ��� ��，�� �D  ���� ��
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第���項が���，第���項が����である等差数列の初項は�
ア

� �，公差は�
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� �である。２.

また，第����項は�
ウ

� �，���は第�
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� �項である。

S　�ア�　�　　�イ�　�　　�ウ�　���　　�エ�　��

 解説

与えられた数列を�� �QD �とし，その初項を�D，公差を�G�とする。

�D  ���であるから　　D��G ��　……�①

�D  ���であるから　　D��G ��　……�②

①，②�を解いて　　　D �，G �

よって，初項は�� �
ア�，公差は�� �

イ��である。

また，一般項� QD �は　　 QD  ���Q 
�� �� �Q��

したがって　　 ��D  �･���� �
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更に， QD  ���とすると　　�Q�� ��　　　　よって　　Q ��

したがって，���は�第� �
エ���項�である。

次のような等差数列の和を求めよ。３.

���　初項��，末項���，項数���　　　　　　������　初項���，末項��，項数���

S　���　���　　���　���

 解説

���　
�

�
･���� 
���  ���

���　
�

�
･����� 
��  ���

次の等比数列の公比を求めよ。また， � �に適する数を求めよ。４.
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S　���　公比��， � �に適する数：��，���
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 解説

与えられた数列を�� �QD �とする。
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第���項が����，第���項が������である等比数列の一般項を求めよ。５.
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 解説

与えられた数列を�� �QD �とし，その初項を�D，公比を�U�とする。

�D  ����であるから　　�� �DU  �����　……�①

�D  �����であるから　　 �DU  ����　……�②
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数列��，�，�，��，��，……�の一般項� QD �を階差数列を用いて求めよ。10.
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この数列�� �QD �の階差数列を�� �QE �とすると，� �QE �は　　�，�，�，��，……
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初項から第�Q�項までの和� Q6 �が， Q6  
�Q ��Q�で表される数列�� �QD �の一般項を求めよ。11.

S　 QD  �Q��　　

 解説
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偶数の数列��，�，�，……�を次のように，順に���個，��個，��個，……�の群に分ける。12.
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���　第�Q�番目の群の最後の数を求めよ。
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次の条件によって定まる数列�� �QD �の一般項を求めよ。13.
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 解説

���　数列�� �QD �は初項��，公差���の等差数列であるから
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���　数列�� �QD �は初項���，公比���の等比数列であるから
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次の条件によって定まる数列�� �QD �の一般項を求めよ。14.
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　初項は� �D  ��であるから，この式は�Q ��のときにも成り立つ。
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���　漸化式を変形すると　　 �Q �D �� �� QD 
��

　 QD �� QE �とおくと　　　　�� �Q �E  � QE

　よって，数列�� �QE �は公比���の等比数列で，初項は

　　　　　　　 �E  �D �� ��� �

　ゆえに，数列�� �QE �の一般項は　　 QE  �･
�Q ��  �Q ��

　したがって　　 QD  QE �� 
�Q �� ��

Q�が自然数のとき，� �Q �Q��は���の倍数であることを数学的帰納法を用いて証明せよ。15.

S　略　

 解説

　>�@　Q ��のとき　　　�･ �� �� �

　　よって，Q ��のとき，� �Q �Q�は���の倍数である。

　>�@　Q N�のとき�� �Q �Q�は���の倍数であると仮定する。

　　このとき，整数�P�を用いて��� �N �N �P��と表され　　� �N  �P�N

　　Q N���のときを考えると
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�N ��� �N ���N��

　　　　　　　　　　　　�� ��P��
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　　よって，Q N���のときも�� �Q �Q�は���の倍数である。

　>�@，>�@�から，すべての自然数�Q�について�� �Q �Q�は���の倍数である。


