
次の条件によって定められる数列�� �QD �の一般項を求めよ。１
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数列�� �QD ，� �QE �を� �D  �， �E  ��， �Q �D  � QD �� QE ， �Q �E  QD � QE �で定めるとき４

���　 �Q �D �[ �Q �E  \� QD 
�[ QE �を満たす�[，\�の値を求めよ。

���　数列�� �QD ，� �QE �の一般項を求めよ。

 �D �，  �Q �D
�QD �

�QD �
�で定められる数列�� �QD �がある。５

���　すべての自然数�Q �に対して� QD 
��であることを示せ。

���　  QE
�

�QD �
�とおくとき， �Q �E �を� QE �で表せ。また，一般項� QD �を求めよ。

数列�� �QD �が� �D  �， �Q �D  
�� QD �

�QD �
�で定められている。６

���　 QE  
�QD �

�QD �
�とおくとき， �Q �E �を� QE �で表せ。

���　数列�� �QD �の一般項を求めよ。



数列�� �QD �の初項から第�Q �項までの和� Q6 �が，一般項� QD �を用いて�  Q6 ���� QD �Q ��と７

表されるとき，一般項� QD �を�Q �で表せ。

硬貨を投げて数直線上を原点から正の向きに進む。表が出れば���進み，裏が出れば���進８

むものとする。このとき，ちょうど点�Q�に到達する確率を� QS �で表す。ただし，Q�は自

然数とする。

���　��以上の�Q�について， �Q �S �と� QS �， �Q �S �との関係式を求めよ。

���　 QS �を求めよ。



次の条件によって定められる数列�� �QD �の一般項を求めよ。１
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 解説

���　漸化式を変形すると

　　　　　　 �Q �D �� �Q �D  �� �Q �D 
�� QD 　　……�①，

　　　　　　 �Q �D �� �Q �D  ��� �Q �D 
�� QD 　……�②

　①�より，数列�� �Q �D ��� QD �は初項� �D �� �D  �，公比���の等比数列であるから

　　　　　　 �Q �D �� QD  
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　  Q ��を代入すると，
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� �� �� �
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��  ��であるから，上の式は�Q ��のときも成り立つ。
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漸化式を変形して

　　　　　　 �Q �D �� �Q �D  �� �Q �D 
�� QD

ゆえに，数列�� �Q �D ��� QD �は，初項� �D �� �D  ��� �，公比���の等比数列であるから

　　　　　　 �Q �D �� QD  �･
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���　 �Q �D �[ �Q �E  \� QD 
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���　数列�� �QD ，� �QE �の一般項を求めよ。

S　���　� 
[，\  � 
�，� ，���， 
�� 　　���　 QD  
�Q� Q

� 
��

�
， QE  

�Q� Q
� 
��

�

 解説

���　 �Q �D �[ �Q �E  QD �� QE �[� QD 
� QE

　　　　　　　��� �� 
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　よって， �Q �D � �Q �[E  \� QD 
� Q[E �とすると

　　　　　�� 
�[ QD ��� 
�[ QE  \ QD �[\ QE
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　　　　　数列�� QD ��� QE �は初項���，公比����の等比数列。
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� Q[E �とすると
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　よって，数列�� QD ��� QE �は，初項� �D �� �E  �，公比���の等比数列であるから
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�QD �
�で定められる数列�� �QD �がある。５

���　すべての自然数�Q �に対して� QD 
��であることを示せ。

���　  QE
�

�QD �
�とおくとき， �Q �E �を� QE �で表せ。また，一般項� QD �を求めよ。
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 解説

���　ある自然数�Q �について� �Q �D  ��とすると，条件式から

　　　　　　 QD �� �� QD 
�� 　　　ゆえに　　  QD �

　よって　　 �Q �D  QD  �Q �D  �…… �  �D �　　　これは条件�  �D ��に反する。

　ゆえに，  �Q �D ��を満たす自然数�Q �はない。
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�
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��である。
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数列�� �QD �の初項から第�Q �項までの和� Q6 �が，一般項� QD �を用いて�  Q6 ���� QD �Q ��と７

表されるとき，一般項� QD �を�Q �で表せ。
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 Q6 ���� QD �Q ���……�①�とする。

①�に�  Q ��を代入すると　　  �6 ���� �D � �

 �6 �D �であるから　　  �D ���� �D � �　　　よって　　  �D �

①�から　　　　  �Q �6 ���� �Q �D �� 
�Q � ���……�②

②�①�から　　  ��Q �6 Q6 ���� 
��Q �D QD �

 ��Q �6 Q6 �Q �D �であるから　　  �Q �D ���� 
��Q �D QD �
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硬貨を投げて数直線上を原点から正の向きに進む。表が出れば���進み，裏が出れば���進８

むものとする。このとき，ちょうど点�Q�に到達する確率を� QS �で表す。ただし，Q�は自

然数とする。

���　��以上の�Q�について， �Q �S �と� QS �， �Q �S �との関係式を求めよ。

���　 QS �を求めよ。
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���　点�Q���に到達するには

　� �� 　点�Q�に到達した後，表が出る。　� �� 　点�Q���に到達した後，裏が出る。

　の���通りの場合があり，� �� ，� �� �の事象は互いに排反である。
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