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 �D �，  �Q �D � �
QD �で定められる数列�� �QD �の一般項を求めよ。７.

数列�� �QD �において，初項から第�Q �項までの和� Q6 �と� QD �の間に，  Q6 ���� QD �Q ��の８.

関係があるとき

���　初項� �D �を求めよ。　　　　　　　　　�����　 QD ， �Q �D �の���項間の関係式を求めよ。

���　数列�� �QD �の一般項を求めよ。

漸化式� �Q �D  � �Q �D �� QD ， �D  �， �D  ��により定められる数列�� �QD �について次の問い９.

に答えよ。

���　数列�� �QD �に関する漸化式は� �Q �D � �Q �ED  D� �Q �D 
�E QD �と変形できる。

　D，E���D!E��の値を求めよ。

���　����を用いて，数列�� �QD �の一般項を求めよ。

�D  �， �D  ��， �Q �D  �Q �D ��� QD �で定められる数列�� �QD �について10.

���　数列�� �QD �に関する漸化式は， �Q �D � �Q �DD  E� �Q �D 
� QDD �と変形できる。D，E�の

　値を求めよ。

���　����を用いて，数列�� �QD �の一般項を求めよ。

漸化式�  ���Q �D � �Q �D � QD �，  �D �，  �D ��により定められる数列�� �QD �の一般項を求11.

めよ。

数列�� �QD ，� �QE �が次のように定められるとき，次の問いに答えよ。12.

　 �D  �， �E  �， �Q �D  � QD � QE ��……��①， �Q �E  QD �� QE ��……��②

���　数列�� QD �� QE ，� QD �� QE �の一般項を求めよ。

���　数列�� �QD ，� �QE �の一般項を求めよ。
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　③�より，数列�� �Q �D ��� QD �は初項���，公比���の等比数列であるから

　　　　　 �Q �D �� QD  � 
�� ･ �Q ��  ��　…④

　よって，②から④を引いて

　　　　　　　　　　 QD  
Q� ��

�D  �， �D  ��， �Q �D  �Q �D ��� QD �で定められる数列�� �QD �について10.

���　数列�� �QD �に関する漸化式は， �Q �D � �Q �DD  E� �Q �D 
� QDD �と変形できる。D，E�の

　値を求めよ。

���　����を用いて，数列�� �QD �の一般項を求めよ。

S　���　� 
D，E  � 
��，� ，��， 
�� 　　���　 QD  
�

� �
��･ �Q �� ��� �Q �

� 
��

 解説

���　 �Q �D � �Q �DD  E� �Q �D 
� QDD �から　　 �Q �D ��D 
�E �Q �D � QDED  �

　これと� �Q �D � �Q �D ��� QD  ��が一致するから　　D�E �，DE ���

　よって，D，E�は方程式� �[ �[��� ��の���つの解である。

　 �[ �[��� ��を解いて　　[ ��，�

　ゆえに　　� 
D，E  � 
��，� ，��， 
��

���　D ��，E ��のとき　　 �Q �D �� �Q �D  �� �Q �D 
�� QD 　……�①

　また　　 �D �� �D  ��

　D �，E ���のとき　　 �Q �D �� �Q �D  ��� �Q �D 
�� QD 　……�②

　また　　 �D �� �D  ��

　①�より，数列�� �Q �D ��� QD �は初項���，公比���の等比数列であるから

　　　　　 �Q �D �� QD  ��･
�Q �� 　……�③

　②�より，数列�� �Q �D ��� QD �は初項���，公比����の等比数列であるから

　　　　　 �Q �D �� QD  � 
�� ･ �Q �
� 
�� 　……�④

　③�④ �から　　� QD  ��･
�Q �� �� 
�� ･ �Q �

� 
��

　よって　　 QD  
�

� �
��･ �Q �� ��� �Q �

� 
��

漸化式�  ���Q �D � �Q �D � QD �，  �D �，  �D ��により定められる数列�� �QD �の一般項を求11.

めよ。

S　 QD  
�Q �� �Q 
��

 解説

 ���Q �D � �Q �D � QD ��から　　 �Q �D �� �Q �D  �� �Q �D 
�� QD

よって，数列�� ���Q �D � QD �は初項�  ��D � �D �，公比���の等比数列であるから

　　　　　  ��Q �D � QD ･� �Q ��

ゆえに　　  ��Q �D � QD
Q�



両辺を� �Q �� �で割ると　　  �
�Q �D
�Q ��

QD
Q�

�

�

 
QD
Q�

QE �とおくと　　  ��Q �E QE
�

�

つまり，数列� �QE は公差が
�

�
の等差数列である

また，  �E  
�D

�
��であるから　　  QE �� ･� 
�Q �

�

�
 

�Q �

�

よって　　 QD  
Q� QE  

Q� ･
�Q �

�
 �Q �� �Q 
��

数列�� �QD ，� �QE �が次のように定められるとき，次の問いに答えよ。12.

　 �D  �， �E  �， �Q �D  � QD � QE ��……��①， �Q �E  QD �� QE ��……��②

���　数列�� QD �� QE ，� QD �� QE �の一般項を求めよ。

���　数列�� �QD ，� �QE �の一般項を求めよ。

S　���　 QD � QE  �･
�Q �� ， QD � QE  �･

�Q ��

　　　���　 QD  
�

� ��･
�Q �� �� 
･ �Q �� ， QE  

�

� ��･
�Q �� �� 
･ �Q ��

 解説

���　①�② �から　　 �Q �D � �Q �E  �� QD 
� QE

　数列�� QD �� QE �は，初項� �D � �E  �，公比���の等比数列であるから

　　　　　　　　�� QD � QE  �･
�Q ��

　①�②�から　　 �Q �D � �Q �E  �� QD 
� QE

　数列�� QD �� QE �は，初項� �D � �E  �，公比���の等比数列であるから

　　　　　　　　�� QD � QE  �･
�Q ��

���　����から　 QD  
�

� ��･
�Q �� �� 
･ �Q �� ， QE  

�

� ��･
�Q �� �� 
･ �Q ��

T　①�から　　 QE  �Q �D �� QD ，QをQ��にして　 �Q �E  �Q �D �� �Q �D

　これらと�②�から　　�� �Q �D �� �Q �D  QD ��� �Q �D 
�� QD

　よって　　　　　　　 �Q �D �� �Q �D �� QD  �

　特性方程式より　 �W ��W�� �　から　W ����

　漸化式を変形すると　　�
 ��Q �D � �Q �D �� 
��Q �D � QD

 ��Q �D � �Q �D �� 
��Q �D � QD

　数列�� �Q �D ��� QD �は，初項� �D �� �D  �，公比���の等比数列であるから

　　　　　　　　　　 �Q �D �� QD  �･
�Q �� 　……�③

　数列�� �Q �D ��� QD �は，初項� �D �� �D  ��，公比���の等比数列であるから

　　　　　　　　　　 �Q �D �� QD  ��･
�Q �� 　……�④

　③，④�から　　　　 QD  
�

� ��･
�Q �� �� 
･ �Q ��

　ゆえに，①�から　　 QE  �Q �D �� QD

　　　　　　　　　　　 
�

� ��･
�� ��Q � �� �� 
･ �� ��Q � �� ��･

�

� ��･
�Q �� �� 
･ �Q ��

　　　　　　　　　　　 
�

� ��･�･
�Q �� ��･� 
･ �Q �� �

�

� ��･
�Q �� �� 
･ �Q ��

　　　　　　　　　　　 
�

� ���･
�Q �� ��･ �Q �� ���･ �Q �� �� 
･ �Q ��

　　　　　　　����������������� 
�

� ��･
�Q �� �� 
･ �Q ��


