
Q�が自然数のとき，次の等式を数学的帰納法を用いて証明せよ。１.
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Q�が自然数のとき，次の不等式を証明せよ。２.

���　 Q� !�Q　　　　　　　　　　　　　　������　Q���のとき　　 Q� !�Q��

Q�が自然数のとき，次のことを数学的帰納法を用いて証明せよ。３.

���　� �Q �Q�は���の倍数である。　　　　　����　 Q� ���は���の倍数である。
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Q�が自然数のとき， �Q �� � ��Q �� �は����の倍数であることを証明せよ。４. �D  �，�Q 
�� �Q �D  �
QD ���によって定まる数列�� �QD �の一般項を推測し，それを数学的５.

帰納法を用いて証明せよ。

�D  ��， �Q �D  �
QD �� QQD ���によって定まる数列�� �QD �について６.

���　 �D ， �D ， �D �を求めよ。

���　第�Q�項� QD �を推測して，それを数学的帰納法を用いて証明せよ。



Q�が自然数のとき，次の等式を数学的帰納法を用いて証明せよ。１.
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���　この等式を�①�とする。
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　　よって，Q ��のとき，①�が成り立つ。

　>�@　Q N�のとき�①�が成り立つ，すなわち

　　　　　　�������……����N 
��  
�

�
N��N 
��

　　であると仮定すると，Q N���のときの�①�の左辺は�

　　　　　　�������……����N 
�� ����N 
�� ���

　　　　　 
�

�
N��N 
�� ����N 
�� ���  

�

� ��
�N ��N 
��  

�

� �N 
�� ��N 
��

　　よって　　�������……�����N 
�� ���  
�

� �N 
�� ���N 
�� ���

　　ゆえに，Q N���のときも�①�が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について�①�が成り立つ。
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　　よって，Q ��のとき，①�が成り立つ。
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　　であると仮定すると，Q N���のときの�①�の左辺は
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　　したがって，Q N���のときも�①�が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について�①�が成り立つ。

Q�が自然数のとき，次の不等式を証明せよ。２.
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���　この不等式を�①�とする。
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　　よって，Q ��のとき�①�が成り立つ。

　>�@　Q N�のとき�①�が成り立つ，すなわち
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　　であると仮定する。Q N���のときの①の両辺の差を考えると
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　　ゆえに，Q N���のときも��①�が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について�①�が成り立つ。

���　この不等式を�①�とする。
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　　よって，Q ��のとき�①�が成り立つ。
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　　ゆえに，Q N���のときも��①�が成り立つ。

　>�@，>�@�から，Q���であるすべての自然数�Q�について�①�が成り立つ。

Q�が自然数のとき，次のことを数学的帰納法を用いて証明せよ。３.

���　� �Q �Q�は���の倍数である。　　　　　����　 Q� ���は���の倍数である。
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　　よって，Q ��のとき，� �Q �Q�は���の倍数である。

　>�@　Q N�のとき�� �Q �Q�は���の倍数であると仮定する。

　　このとき，整数�P�を用いて��� �N �N �P��と表され　　� �N  �P�N
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　　よって，Q N���のときも�� �Q �Q�は���の倍数である。

　>�@，>�@�から，すべての自然数�Q�について�� �Q �Q�は���の倍数である。

���　>�@　Q ��のとき　　　 �� �� �

　　よって，Q ��のとき， Q� ���は���の倍数である。

　>�@　Q N�のとき� Q� ���は���の倍数であると仮定する。

　　このとき，整数�P�を用いて�� N� �� �P��と表され　　 N�  �P��

　　Q N���のときを考えると
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　　よって，Q N���のときも� Q� ���は���の倍数である。

　>�@，>�@�から，すべての自然数�Q�について� Q� ���は���の倍数である。

数学演習（数学的帰納法）+２４．１１．１６　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(　　)組(　　)番　名前(　　　　　　　　　　　)　



Q�が自然数のとき， �Q �� � ��Q �� �は����の倍数であることを証明せよ。４.
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　よって，Q ��のとき， �Q �� � ��Q �� �は����の倍数である。

>�@　Q N�のとき� �Q �� � ��Q �� �は����の倍数であると仮定する。
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　よって，Q N���のときも� �Q �� � ��Q �� �は����の倍数である。

>�@，>�@�から，すべての自然数�Q�について� �Q �� � ��Q �� �は����の倍数である。

�D  �，�Q 
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QD ���によって定まる数列�� �QD �の一般項を推測し，それを数学的５.

帰納法を用いて証明せよ。
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　よって，Q N���のときも�①�が成り立つ。

>�@，>�@�から，すべての自然数�Q�について�①�が成り立つ。

�D  ��， �Q �D  �
QD �� QQD ���によって定まる数列�� �QD �について６.

���　 �D ， �D ， �D �を求めよ。

���　第�Q�項� QD �を推測して，それを数学的帰納法を用いて証明せよ。
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　　よって，Q ��のとき，①�が成り立つ。
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　　よって，Q N���のときも�①�が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について�①�が成り立つ。


