
次の条件によって定められる数列�� �QD �の�第���項から第���項を求めよ。１
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�次の条件によって定められる数列�� �QD �の一般項を求めよ。２
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次の条件によって定められる数列�� �QD �の一般項を求めよ。３
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次の条件によって定められる数列�� �QD �の一般項を求めよ。４
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数学的帰納法を用いて，次の等式を証明せよ。　  ����� � � …… � 
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Q �を���以上の自然数とするとき，次の不等式を証明せよ。６

　　　　　 !Q� ��Q �

すべての自然数�Q �について， ��� �Q � �Q Q�は���の倍数である。このことを数学的帰納法７

を用いて証明せよ。

次の条件によって定められる数列�� �QD �がある。８

　　　  �D ��，  �Q �D ���QD � QQD ���� 
 Q �，�，�，……

���　 �D ， �D ， �D �を求めよ。

���　第�Q �項を推測して，それを数学的帰納法を用いて証明せよ。



次の条件によって定められる数列�� �QD �の�第���項から第���項を求めよ。１

 �D ��，  �Q �D �QD �Q
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�次の条件によって定められる数列�� �QD �の一般項を求めよ。２
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���　初項��，公差���の等差数列であるから

　　　　  QD  �� ･� 
�Q � � ��Q �

���　初項��，公比����の等比数列であるから

　　　　  QD � �Q �
� 
��

次の条件によって定められる数列�� �QD �の一般項を求めよ。３
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　初項は�  �D ��なので，この式は�  Q ��のときにも成り立つ。

　したがって，一般項は　　  QD
�Q� �

�

���　条件より　　  ��Q �D QD ��Q �

　数列�� �QD �の階差数列の一般項が� ��Q ��であるから， �Q ��のとき
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次の条件によって定められる数列�� �QD �の一般項を求めよ。４
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���　漸化式を変形すると　　  ��Q �D � �� 
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　  QE �QD ��とすると　　  �Q �E � QE

　よって，数列�� �QE �は公比���の等比数列で，初項は　　  �E  ��D �  �� � �

　数列�� �QE �の一般項は　　  QE ･� �Q ��  �Q ��

　したがって，数列�� �QD �の一般項は，  QD �QE ��より　　  QD ��Q �� �
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�
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　数列�� �QE �の一般項は　　  QE ��
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　したがって，数列�� �QD �の一般項は，  QD �QE ��より　　  QD ���
�Q �
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数学的帰納法を用いて，次の等式を証明せよ。　  ����� � � …… � 
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証明すべき等式を�� 
$ �とする。
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　　よって，  Q ��のとき，� 
$ �が成り立つ。

　>�@　  Q N�のとき�� 
$ �が成り立つ，すなわち
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　　が成り立つと仮定すると，  Q �N ��のときの�� 
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　　よって，  Q �N ��のときも�� 
$ �が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について�� 
$ �が成り立つ。
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Q �を���以上の自然数とするとき，次の不等式を証明せよ。６

　　　　　 !Q� ��Q �

S　略

この不等式を��$��とする。

　>�@　  Q ��のとき

　　　　  左辺  �� ��，  右辺  �･� � � ��

　　よって，�  Q ��のとき，� 
$ �が成り立つ。

　>�@　 �N ��として，  Q N�のとき�� 
$ �が成り立つ，すなわち
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　　が成り立つと仮定する。

　　  Q �N ��のときの�� 
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　　よって，  Q �N ��のときも�� 
$ �が成り立つ。

　>�@，>�@�から，���以上のすべての自然数�Q �について�� 
$ �が成り立つ。

すべての自然数�Q �について， ��� �Q � �Q Q�は���の倍数である。このことを数学的帰納法７

を用いて証明せよ。
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｢ ��� �Q � �Q Q �は���の倍数である｣�を�� 
$ �とする。
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　よって，  Q ��のとき，� 
$ �が成り立つ。

>�@　  Q N�のとき�� 
$ �が成り立つ，すなわち，ある整数�P �を用いて
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　と表されると仮定する。
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　ここで， ���P �N �N ��は整数である。

　よって， ��� �
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　が成り立つ。

>�@，>�@�から，すべての自然数�Q �について�� 
$ �が成り立つ。

次の条件によって定められる数列�� �QD �がある。８

　　　  �D ��，  �Q �D ���QD � QQD ���� 
 Q �，�，�，……

���　 �D ， �D ， �D �を求めよ。

���　第�Q �項を推測して，それを数学的帰納法を用いて証明せよ。
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���　����から，  QD ���Q ��であると推測される。

　  QD ���Q ��を��$��とする。
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　　よって，  Q ��のとき��$��が成り立つ。

　>�@　  Q N�のとき��$��が成り立つ，すなわち
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　　が成り立つと仮定する。
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　　よって，�  Q �N ���のときも��$��が成り立つ。

　>�@，>�@�から，すべての自然数�Q�について��$��が成り立つ。


