
第���項が���，第����項が����である等差数列において，第����項を求めよ。また，����より１.

大きくなるのは第何項からか。

��から�����までの整数について，次の和を求めよ。２.

���　��の倍数の和　　　　　　　　　　　　����　��の倍数でない数の和

初項が���，公差が����である等差数列において３.

���　第何項が初めて負になるか。

���　初項から第何項までの和が最大となるか。また，そのときの和を求めよ。

等比数列�� �QD �について， �D � �D  �， �D � �D  ���である。このとき，数列�� �QD �の初項４.

と公比を求めよ。
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次の和�6�を求めよ。７.

　　　　　　　　　　6 �･���･���･ �� �……�Q･ �Q ��

次の数列の第�N�項を求めよ。また，初項から第�Q�項までの和� Q6 �を求めよ。８.

�，���，���� �� ，……

階差数列を利用して，次の数列の一般項� QD �を求めよ。　�，�，��，��，���，……９.

初項から第�Q�項までの和� Q6 �が， Q6  
�Q ��Q�で表される数列�� �QD �の一般項を求めよ。10.

　　　　　

奇数の数列��，�，�，……�を11.

　　　� 
� ，� 
�，� ，� 
�，�，�� ，� 
��，��，��，�� ，……

のように，順に���個，��個，��個，……�の群に分ける。

���　第�Q�番目の群の最初の奇数を�Q�の式で表せ。

���　第����番目の群に入る奇数の和を求めよ。



第���項が���，第����項が����である等差数列において，第����項を求めよ。また，����より１.

大きくなるのは第何項からか。

S　�前半�　��　　�後半�　第����項

 解説

与えられた数列を�� �QD �とし，その初項を�D，公差を�G�とする。

�D  ���であるから　　�D��G ����　……�①

��D  ���であるから　　D���G ��　……�②

①，②�を解いて　　D �，G �

よって　　 QD  ���Q 
�� �� �Q��

したがって　　 ��D  �･���� ��

また， QD !����とすると　　�Q��!���　　　よって　　Q!
���

�
 �����……　……�①

①�を満たす最小の自然数�Q�は　　Q ��

よって，����より大きくなるのは第����項からである。

��から�����までの整数について，次の和を求めよ。２.

���　��の倍数の和　　　　　　　　　　　　����　��の倍数でない数の和
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 解説

���　求める和は
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初項が���，公差が����である等差数列において３.

���　第何項が初めて負になるか。

���　初項から第何項までの和が最大となるか。また，そのときの和を求めよ。

S　���　第����項　　���　第����項，和����

 解説

一般項を� QD �とすると　　 QD  ����Q 
�� � � 
��  ����Q

���　 QD ���とすると　　����Q��　　　よって　　Q!
��

�
 ����　……�①

　�①�を満たす最小の自然数�Q�は　　Q ��

　したがって，第����項が初めて負になる。

���　����の結果から　　 �D !�， �D !�，……， ��D !�， ��D ��， ��D ��，……�

　よって，正のものだけ足せばいいので，初項から第����項までの和が最大となる。

　また，そのときの和は　　
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�
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等比数列�� �QD �について， �D � �D  �， �D � �D  ���である。このとき，数列�� �QD �の初項４.

と公比を求めよ。

S　初項�
�

�
，公比����または��初項��，公比���

 解説

初項を�D，公比を�U�とする。

�D � �D  ��であるから　�　�DU� �DU  �　　……�①

�D � �D  ���であるから　　 �DU � �DU  ��　……�②

②�から　　�DU 
� �DU �U  ��　　　　①�を代入して　　� �U  ��

よって， �U  ��から　　U ��

①�から　　U ��のとき　　��D��D �　　　���ゆえに　D 
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 解説
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次の和�6�を求めよ。７.

　　　　　　　　　　6 �･���･���･ �� �……�Q･ �Q ��
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 解説

U　等差数列�等比数列の形なので、ずらして引くことを考える。
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次の数列の第�N�項を求めよ。また，初項から第�Q�項までの和� Q6 �を求めよ。８.

�，���，���� �� ，……

S　第�N�項� N� ��， Q6  
�Q �� �Q��

 解説

　第�N�項は���� �� �……� �N �� となる。これは，初項�，公比�，項数Nの等比数列の和

なので，等比数列の和の公式より
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階差数列を利用して，次の数列の一般項� QD �を求めよ。　�，�，��，��，���，……９.

S　 QD  
�Q� �

�

 解説

　この数列の階差数列は　　�，�，��，��，……

　これは初項が��，公比が���の等比数列であるから，その一般項を� QE �とすると

　　　　　　　　　 QE  �･
�Q �� 　　すなわち　　 QE  
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　よって，Q���のとき
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　初項は� �D  ��であるから，上の� QD �は�Q ��のときにも成り立つ。

　したがって，一般項� QD �は　　 QD  
�Q� �

�

初項から第�Q�項までの和� Q6 �が， Q6  
�Q ��Q�で表される数列�� �QD �の一般項を求めよ。10.

　　　　　

S　 QD  �Q��

 解説

　Q���のとき　　 QD  Q6 � �Q �6  �
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　初項は　　 �D  �6  
�� ��･� ��

　よって， QD  �Q���は�Q ��のときにも成り立つ。

　したがって　　 QD  �Q��

奇数の数列��，�，�，……�を11.

　　　� 
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のように，順に���個，��個，��個，……�の群に分ける。

���　第�Q�番目の群の最初の奇数を�Q�の式で表せ。

���　第����番目の群に入る奇数の和を求めよ。

S　���　 �Q �Q��　　���　����

 解説

���　第�N�番目の群に入る奇数は�N�個であるから，Q���のとき，第���番目の群から

　第��Q 
�� �番目の群までに入る奇数は

　　　　　　�������……���Q 
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　よって，第�Q�番目の群の最初の奇数は，奇数の数列��，�，�，……�の
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　これは�Q ��のときにも成り立つ。

���　����の結果から，第����番目の群の最初の奇数は　Q ��より　 ��� ����� ���

　第��群には，��項の項が属しているので

　よって，求める和は初項����，公差��，項数����の等差数列の和であるから
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