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���から�����までの整数のうち，次のような数の和を求めよ。７.

���　��の倍数　　　　���　��で割り切れない数　　　　���　��で割ると���余る数

ある等差数列の初項から第�Q�項までの和を� Q6 �とする。 ��6  ���， ��6  ����であるとき�８.

この数列の初項と公差を求めよ。

初項が���，公差が����である等差数列において９.

���　第何項が初めて負になるか。

���　初項から第何項までの和が最大となるか。また，そのときの和を求めよ。

等差数列����，���，���，���，……�において，����と�����の間にある項の個数を求めよ｡10.

また，それらの項の和を求めよ。

初項が����，公差が���である等差数列において，初項から第�Q�項までの和を� Q6 �とする。11.

Q6 �が初めて正となる�Q�の値を求めよ。



次のような等差数列の和を求めよ。１.

���　初項��，末項���，項数���　　　　　　������　初項���，末項��，項数���

S　���　���　　���　���

���　
�

�
･���� 
���  ���　　　　���　

�

�
･����� 
��  ���

次のような等差数列の初項から第�Q�項までの和を� Q6 �とする。 Q6 �および� ��6 �を求めよ。２.

���　初項��，公差��　　　　���　　　　　　������　初項����，公差���

���　�，�，��，……　　　　　　　　　　　���　��，��，��，……

S　���　 Q6  Q��Q 
�� ， ��6  ���　　���　 Q6  �Q� 
�Q ��� ， ��6  ���

　　　���　 Q6  
Q� 
��Q �

�
， ��6  ���　　���　 Q6  ��Q� 
�Q �� ， ��6  ���

���　 Q6  
�

�
Q��･���Q 
�� �･�  Q��Q 
��

　よって　　 ��6  ����･�� 
��  ���

���　 Q6  
�

�
Q��･�����Q 
�� ･� �
��  �Q� 
�Q ���

　よって　　 ��6  ������ 
����  ���

���　初項は��，公差は���であるから

　　 Q6  
�

�
Q��･���Q 
�� �･�  

Q� 
��Q �

�

　よって　　 ��6  
��� 
�･ ��� �

�
 ���

���　初項は���，公差は����であるから

　　 Q6  
�

�
Q��･����Q 
�� ･� �
��  ��Q�Q 
���

　よって　　 ��6  ��･����� 
���  ���

次の等差数列の和を求めよ。３.

���　�，�，�，……，��　　　　　　　　　�����　��，��，��，……，�

S　���　���　　���　���

���　初項は��，公差は���であるから，項数を�Q�とすると

　　　　���Q 
�� ･� ��　　　よって　　Q ��

　したがって，求める和は　　
�

�
･���� 
���  ���

���　初項は���，公差は����であるから，項数を�Q�とすると

　　　　����Q 
�� ･� 
��  �　　　よって　　Q ��

　したがって，求める和は　　
�

�
･����� 
��  ���

次の和を求めよ。４.

���　�������……����　　　　　　　　�����　�������……����

���　�������……����　　　　　　　　�����　��������……����

S　���　���　　���　���　　���　����　　���　���

���　�������……���� 
�

�
･����� 
��  ���

���　�������……���� �������……����･�� 
��

　　　　　　　　　　　�� ���  ���

���　�������……���� ��������……� 
��� ����� 
��

　　　　　　　　　　　�� 
�

�
･����� 
�� ��

　　　　　　　　　　　�� ����

���　��������……���� ���������……� 
���

　　　　　　　　　　　　 ���������……����･�� �
��

　　　　　　　　　　　　 �･ ���  ���
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