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第����項が�����，第����項が�����である等差数列がある。１.

���　この等差数列の初項と公差を求めよ。

���　��はこの数列の第何項か。

S　���　初項���，公差���　　���　第���項

 解説
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　ゆえに　　　Q �

　よって，��はこの数列の第���項である。

数列�D，�， �D �が等差数列であるとき，D�の値を求めよ。２.

S　D �，��

 解説

数列�D，�， �D �が等差数列であるから　　　�･� D� �D
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���　第何項が初めて負になるか。
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