
D�  �， E�  �， D��E�  ��のとき，内積�D･E �を求めよ。また，D�WE，D�E�が垂直１.

になるように，W�の値を定めよ。

次の点�$�を通り，ベクトル�G�に平行な直線の方程式をベクトルを用いて求めよ。２.

$����，��，G ��， 
��

△2$%�において，2$ D，2% E�とする。３.

���　辺�2$�を��：��に内分する点を�&，辺�2%�を��：��に内分する点を�'�とし，線分

　$'�と�%&�との交点を�3�とする。このとき，23�を�D，E �で表せ。

���　辺�2$�を��：��に内分する点を�3，辺�$%�を��：��に内分する点を�4�とし，線分�24

　と�%3�の交点を�&�とする。このとき，2&�を�D，E �で表せ。

��点�2�� 
�，� ，$�� 
�，� ，%�� 
�，� �がある。実数�V，W�が次の条件を満たしながら変化す４.

るとき，23 V2$�W2%�で表される点�3�の存在範囲を図示せよ。

　��V��，��W��

異なる���点�$�� 
D� ，%�� 
E� �がある。点�3�� 
S� �に対し，S VD�WE���V，W�は実数��と表され５.

るとき，次の条件を満たす点�3�の存在範囲を求めよ。

　　　　　　　　�V�W �，V��，W��
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△2$%�に対し，23 V2$�W2%���V，W�は実数��とする。V，W�が次の条件を満たしなが６.

ら変化するとき，点�3�の描く図形を図示せよ。

���　V�W �，V��，W��　　　　　　　　�����　V�W�
�

�
，V��，W��

平行四辺形�$%&'�において，辺�$%�を��：��に内分する点を�(，対角線�%'�を��：��に７.

内分する点を�)�とする。このとき，��点�(，)，&�は一直線上にあることを証明せよ。

��点�$���，�， 
�� ，%����，�， 
�� ，&���，�， 
�� �がある。四角形�$%&'�が平行四辺８.

形となるとき，点�'�の座標を求めよ。

平行六面体�2$'%�&(*)�において，辺�'*�の�*�を越える延長上に�*0 �*'�となる９.

ように点�0�をとり，直線�20�と平面�$%&�の交点を1�とする。2$ D，2% E，

2& F�とするとき，21�を�D，E，F�を用いて表せ。

次のような球面の方程式を求めよ。10.

���　原点を中心とする半径���の球面

���　点���，��，���を中心とする半径���の球面

���　点�$���，�， 
�� �を中心とし，点�%���， 
��，� �を通る球面

球面� �
� 
�[ � � �

� 
�\ � � �
� 
�] �  ��� �と，[\�平面が交わる部分は円を表す。その中心の11.

座標と半径を求めよ。



D�  �， E�  �， D��E�  ��のとき，内積�D･E �を求めよ。また，D�WE，D�E�が垂直１.

になるように，W�の値を定めよ。

S　D･E �，　W �
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次の点�$�を通り，ベクトル�G�に平行な直線の方程式をベクトルを用いて求めよ。２.

$����，��，G ��， 
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S　�[��\ �

原点を�2，直線上の任意の点を�3��[，\�，W�を実数とする。

　$3�は�G�に平行なので�$3 WG�とおける

　$3 23�2$�より　23�2$ WG　なので

　23 2$�WG�から　　�[，\� � 
��，� �W��， 
��  �����W，� 
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　よって　　[ ����W　……�①，　\ ���W　……�②

　①���②���から�W�を消去して　　�[��\ �

△2$%�において，2$ D，2% E�とする。３.

���　辺�2$�を��：��に内分する点を�&，辺�2%�を��：��に内分する点を�'�とし，線分

　$'�と�%&�との交点を�3�とする。このとき，23�を�D，E �で表せ。

���　辺�2$�を��：��に内分する点を�3，辺�$%�を��：��に内分する点を�4�とし，線分�24

　と�%3�の交点を�&�とする。このとき，2&�を�D，E �で表せ。
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�，� ，$�� 
�，� ，%�� 
�，� �がある。実数�V，W�が次の条件を満たしながら変化す４.

るとき，23 V2$�W2%�で表される点�3�の存在範囲を図示せよ。
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S　� �図 �の斜線部分　ただし，境界線を含む
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　V N��N�は定数��とすると，��N���で

　　　　　　23 N2$�W2%

　24 N2$�とすると　　23 24�W2%

　W�の値が���から���まで変化すると，点�3�は線分�56

　上を�5�から�6�まで動く。

　ただし　25 24�2%，26 24��2%�

　次に，N�の値が���から���まで変化すると，点�5，6

　は，566%'� 
6&( �の状態を保ちながら，それぞれ

　線分�%&�上，'(�上を，%�から�&，'�から�(�まで動く。�

　ただし　2& 2$�2% � 
�，� ，2' �2% � 
�，� ，2( 2$��2% � 
�，�

　よって，点�3�の存在範囲は　平行四辺形�%&('�の周および内部

　　　　　　　　　　　　　　��図��の斜線部分。ただし，境界線を含む。

V　平行四辺形の各頂点の座標をしっかり求める。
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異なる���点�$�� 
D� ，%�� 
E� �がある。点�3�� 
S� �に対し，S VD�WE���V，W�は実数��と表され５.

るとき，次の条件を満たす点�3�の存在範囲を求めよ。

　　　　　　　　�V�W �，V��，W��

S　　2$ D，2% E�とし，2( �2%�となるような点�(�をとると　線分�$(
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2$ D，2% E�とする。

�V�W ��から　　　V�
W

�
 �
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 W ��とおくと　　�V�W � �，V��，W ���

S VD�
W

� � 
�E� �であるから　　S VD�W �� 
�E�

よって，2( �2%�となるような点�(�をとると，

点�3�� 
S� �の存在範囲は線分�$(�である。

△2$%�に対し，23 V2$�W2%���V，W�は実数��とする。V，W�が次の条件を満たしなが６.

ら変化するとき，点�3�の描く図形を図示せよ。
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S　���，���　�図�　����は境界線を含む
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　よって，点�3�が描く図形は線分�$ �% �　�図�
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　よって，点�3�が描く図形は�△2$ �% ��の周および内部　�図�

平行四辺形�$%&'�において，辺�$%�を��：��に内分する点を�(，対角線�%'�を��：��に７.

内分する点を�)�とする。このとき，��点�(，)，&�は一直線上にあることを証明せよ。
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したがって，() 
�

�
(&�であるから，��点�(，)，&�は一直線上にある。

��点�$���，�， 
�� ，%����，�， 
�� ，&���，�， 
�� �がある。四角形�$%&'�が平行四辺８.

形となるとき，点�'�の座標を求めよ。
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したがって，点�'�の座標は　　��，��， 
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平行六面体�2$'%�&(*)�において，辺�'*�の�*�を越える延長上に�*0 �*'�となる９.

ように点�0�をとり，直線�20�と平面�$%&�の交点を1�とする。2$ D，2% E，

2& F�とするとき，21�を�D，E，F�を用いて表せ。
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点�1�は平面�$%&�上にあるから，&1 V&$�W&%�とな

る実数�V，W�がある。
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V　点�3�が平面�$%&�上にある

　　　� ��23 V2$�W2%�X2&，V�W�X ����V，W，X�は実数�

次のような球面の方程式を求めよ。10.

���　原点を中心とする半径���の球面

���　点���，��，���を中心とする半径���の球面

���　点�$���，�， 
�� �を中心とし，点�%���， 
��，� �を通る球面
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座標と半径を求めよ。
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　この方程式は，[\�平面上では円を表す。
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