
���　��点�$���，�，��，%����，�，��，*����，��，���について１.

　�ア�　線分�$%�を��：��に内分する点�3�の座標を求めよ。

　�イ�　線分�$%�を��：��に外分する点�4�の座標を求めよ。

　�ウ�　�345�の重心が点�*�となるような点�5�の座標を求めよ。

���　点�$���，�，���と点�%����，�，���を結ぶ線分�$%�上に点�&��D，E，���がある。この

　とき，D，E�の値を求めよ。

���　点�$���，－�，���を通る，次のような平面の方程式を，それぞれ求めよ。２.

　�ア�　[�軸に垂直　　　　　　�イ�　\�軸に垂直　　　　　　�ウ�　] �軸に垂直

���　点�%���，�，－���を通る，次のような平面の方程式を，それぞれ求めよ。

　�ア�　[\�平面に平行　　　　���イ�　\] �平面に平行　　　　���ウ�　][�平面に平行

次の条件を満たす球面の方程式を求めよ。３.

���　��点�$���，�，��，%��－�，�，－���を直径の両端とする。

���　点�� 
�，�，� �を通り，��つの座標平面に接する。

数学演習（空間座標�球）Ｒ１．１２．１　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(　　)組(　　)番　名前(　　　　　　　　　　　)　



��点���，�，��，��，�，��，��，�，��，��，�，－���を通る球面の方程式を求めよ。また，４.

その中心の座標と半径を求めよ。

中心が点���，－�，���で，原点を通る球面を�6 �とする。５.

���　6 �と�\] �平面の交わりは円になる。この円の中心と半径を求めよ。

���　6 �と平面�  ] N�の交わりが半径�(� �の円になるという。N�の値を求めよ。

点�2�を原点とする座標空間において，$���，�， 
�� �とする。６.

�
23� ��2$･23��� ��を満たす点�3�� 
[，\，] �の集合はどのような図形を表すか｡

また，その方程式を�[，\，]�を用いて表せ。
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