
導関数の定義にしたがって，関数�\ �[ �� �[ ���の導関数を求めよ。１.

曲線�\ [ �
� 
�[ � �に，点���， 
��� �から引いた接線�@の方程式を求めよ。２.

関数�\ �[ �� �[ ��[���の極値を求めよ。また，そのグラフをかけ。３.

I � 
[  
�[ � �D[ ��[�E�とする。I � 
[ �は�[ ��で極小になり，[ F�で極大値���をとる。４.

定数�D，E，F�の値と�I � 
[ �の極小値をそれぞれ求めよ。

関数�\ � �[ � �[ ��[�の区間����[���における最大値と最小値を求めよ。５.

��次方程式� �[ ��[���D ��の異なる実数解の個数が，定数�D�によってどのように変６.

わるかを調べよ。
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関数�I � 
[  
�[ � �D[ ���D 
�� [���が極値をもつような定数�D�の値の範囲を求めよ。７.

次の不等式を証明せよ。８.

���　[���のとき　 �[ !� �[ ��　　　　　　����　[!��のとき　 �[ �� �[ ��[��!�

D!��とする。関数�I � 
[  D[ �
� 
�[ � �E�の区間���[���における最大値が���，最小値９.

が����であるという。定数�D，E�の値を求めよ。

曲線�\ �[ �� �[ ���[���に対して，\�軸上の点�$�� 
�，D �から相異なる���本の接線10.

を引くことができるように，実数�D�の値の範囲を定めよ。

D�を正の定数とする。��次関数�I � 
[  
�[ �� �D[ � �D [�の���[���における最大値�0 � 
D11.

を求めよ。
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