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関数�\ �[ �� �[ ��[����の極値を求め，そのグラフをかけ。７.
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定数�D，E，F�の値と極小値を求めよ。

関数�\ �[ �� �[ ���の���[���における最大値と最小値，およびそのときの�[�の値を10.

求めよ。　��

D�は定数とする。方程式�� �[ ��[�D ��のが異なる�個の実数解をもつような�D�の値の11.

範囲を求めよ。

[���のとき�� �[ ����[��が成り立つことを証明せよ。また，等号が成り立つのはいつか。12.
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