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0(x<2p とする。次の問いに答えよ。７.

(1)　方程式 sinx+U3 cosx=U2  を解け。

(2)　関数 y=sinx+U3 cosx  の最大値と最小値を求めよ。
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(1)　t=sinh+cosh  とおいて，y を t の関数で表せ。

(2)　t のとりうる値の範囲を求めよ。

(3)　y のとりうる値の範囲を求めよ。

f 0 1h = 2sin h+sinhcosh+2 2cos h   80(h 9(
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