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a は第 1 象限の角で sina=
5

13
，b は第 3 象限の角で cosb=-

3

5
 とする。このとき，８.

sin 0 1+a b ，cos 0 1+a b  の値を求めよ。
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x+2　…… ② のなす角 h 80<h 9<
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 を求めよ。９.

0(h<2p のとき，次の方程式を解け。10.
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　関数 y=U3 sinh-cosh  00(h 1<2p  の最大値，最小値とそのときの h の値を求めよ。12.

また，そのグラフをかけ。

0(h<2p のとき，次の方程式を解け。13.
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0(h<2p のとき，次の方程式を解け。５.
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a は第 1 象限の角で sina =
5
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，b は第 3 象限の角で cosb =-
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　関数 y=U3 sinh -cosh  00(h 1<2p  の最大値，最小値とそのときの h の値を求めよ。12.

また，そのグラフをかけ。
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