
1 辺の長さが 10 cm の正三角形の各頂点を中心とし，他

の頂点を通る円弧を右の図のように描く。この 3 つの円

弧で囲まれた図形の周の長さと面積を求めよ。

１.

次の値を求めよ。２.

(1)　sin
65

6
p　　　　　　　  (2)　cos88 99-

11

4
p 　　　　　  (3)　tan

14

3
p

(4)　cos 00 11-p h -cos88 99+
p

2
h +sin 88 99-

p

2
h +sin 00 11+p h

sinh+cosh=-
1

2
  00p<h 11<2p  のとき，次の式の値を求めよ。３.

(1)　sinhcosh　　　　　　  (2)　tanh+
1

tanh
　　　　 (3)　 3sin h- 3cos h

0(x<2p とする。次の問いに答えよ。４.

(1)　方程式 sin x+U3 cosx=U2  を解け。

(2)　関数 y=sin x+U3 cosx  の最大値と最小値を求めよ。

0(h<2p のとき，次の方程式 ! 不等式を解け。５.

(1)　cos2h-3cosh+2=0　　　　　　　  (2)　sin 2h>cosh
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0(h<2p のとき，次の方程式 ! 不等式を解け。６.

(1)　cos88 99-2h
p

4
= U3

2
　　　　　　　　  (2)　cos88 99-2h

p

4
)

U3
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p

2
<h<p とする。sinh=

1

3
 のとき，sin 2h，cos

h

2
，cos3h の値を求めよ。７.

0(h(p のとき，次の方程式を解け。８.

　　sin2h+sin3h+sin4h=0

a を定数とする h に関する方程式 2sin h-cosh+a=0 について，次の問いに答えよ。９.

ただし， 0(h<2p とする。

(1)　この方程式が解をもつための a の条件を求めよ。

(2)　この方程式の解の個数を a の値の範囲によって調べよ。



1 辺の長さが 10 cm の正三角形の各頂点を中心とし，他

の頂点を通る円弧を右の図のように描く。この 3 つの円

弧で囲まれた図形の周の長さと面積を求めよ。

１.

s　順に　10p cm，5000p 11-U3  2cm
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図のように A，B，C を定め，弧 AB の長さを l とす

ると　l=10･
p

3
  (cm)

よって，求める周の長さは

　3l=3･10･
p

3
=10p  (cm)

次に，扇形 ABC の面積を S とすると　S=
1

2
･ 210 ･

p
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また △ABC=S - とすると　S -=
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2
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次の値を求めよ。２.
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2
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h +sin 00 11+p h
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　　　　　=-cosh-00 11-sinh +cosh-sinh=0

sinh +cosh =-
1

2
  00p<h 11<2p  のとき，次の式の値を求めよ。３.

(1)　sinhcosh　　　　　　  (2)　tanh+
1

tanh
　　　　 (3)　 3sin h- 3cos h
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(1)　sinh +cosh =-
1

2
 の両辺を 2 乗すると

　　　　　　 2sin h +2sinhcosh + 2cos h =
1
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　よって　　1+2sinhcosh=
1
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=
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=
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(3)　 3sin h - 3cos h =00sinh 11-cosh 00
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3

8
=

7

4

　p<h<2p であるから　　sinh<0

　これと (1) の結果から　　  cosh>0

　よって　　sinh -cosh<0

　ゆえに　　sinh -cosh=- U7
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　したがって，① から

　　　　　　 3sin h - 3cos h =- U7

2 881 99-
3

8
=- U7

2
･

5

8
=-

5U7

16

0(x<2p とする。次の問いに答えよ。４.

(1)　方程式 sin x+U3 cosx=U2  を解け。

(2)　関数 y=sin x+U3 cosx  の最大値と最小値を求めよ。

s　(1)　x=
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12
p，
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12
p　　(2)　x=

p

6
 のとき最大値 2，x=

7

6
p のとき最小値 -2

(1)　左辺を変形して　　2sin88 99+x
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=
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(2)　y=sinx+U3 cosx=2sin88 99+x
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　0(x<2p のとき　　
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　よって，sin88 99+x
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3
 がとる値の範囲は　　-1(sin88 99+x
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3
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　ゆえに　　-2(y(2
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0(h<2p のとき，次の方程式 ! 不等式を解け。５.

(1)　cos2h -3cosh+2=0　　　　　　　  (2)　sin 2h >cosh

s　(1)　h=0，
p

3
，

5

3
p　　(2)　

p

6
<h<

p

2
，

5

6
p<h<

3

2
p

x 

 y

 O

-1

1

1-1 5

3
p

p

3

1

2

(1)　cos =2h -2 2cos h 1を方程式に代入して整理すると

　　　　　　2 2cos h-3cosh+1=0

　よって　　00cosh 11-1 002cosh 11-1 =0

　ゆえに　　cosh =1　または　cosh=
1

2
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(2)　sin =2h 2sinhcosh を不等式に代入すると

　　　　　　2sinhcosh>cosh

　よって　　cosh00 11-2sinh 1 >0

　ゆえに　　cosh >0，sinh>
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0(h<2p のとき，次の方程式 ! 不等式を解け。６.
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　② の範囲で，cos =t U3
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 の解は
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(2)　① のおき換えにより
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　② の範囲で，④ を満たす t の値の範
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，cos3h の値を求めよ。７.
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0(h(p のとき，次の方程式を解け。８.

　　sin 2h +sin3h +sin4h =0

s　 =h 0，
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与式から　00sin2h 11+sin4h +sin3h =0

ここで　sin 2h+sin 4h=2sin
+2h 4h

2
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-2h 4h

2
=2sin 3hcos 00 11-h

よって　　2sin 3hcosh+sin 3h=0

すなわち　sin 3h 002cosh 11+1 =0

したがって　 =sin3h 0  または  cosh=-
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[1]　sin 3h =0 のとき

　0(h(p から　0(3h(3p　ゆえに　3h=0，p，2p，3p

　よって　 =h 0，
p
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，
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3
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[2]　cosh=-
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2
 のとき　0(h(p から　h=
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a を定数とする h に関する方程式 2sin h-cosh+a=0 について，次の問いに答えよ。９.

ただし， 0(h<2p とする。

(1)　この方程式が解をもつための a の条件を求めよ。

(2)　この方程式の解の個数を a の値の範囲によって調べよ。

s　(1)　-
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4
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　　　(2)　a<-
5

4
 のとき 0 個，a=-

5

4
 のとき 2 個，-

5

4
<a<-1 のとき 4 個，

　　　　　a=-1 のとき 3 個，-1<a<1 のとき 2 個，a=1 のとき 1 個，

　　　　　1<a のとき 0 個
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y=a

y

O t

-1

y=a

cosh=t とおくと，方程式は　001 11- 2t -t+a=0

ゆえに　 2t +t-1=a　この左辺を f 00 11t  とおく。

(1)　0(h<2p であるから　-1(t(1  ……  ①

　求める条件は，① の範囲で y=f 00 11t  のグラフと

　y=a のグラフが共有点をもつ条件である。

　f 0 1t =
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2
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 であるから，右の図より
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(2)　t=-1 のとき　h=p，t=1 のとき　h=0

　-1<t<1 のとき cosh=t を満たす h は 2 個ある。

　よって， y=f 00 11t  のグラフと y=a のグラフの共有点の t の値に注意して，方程式の

　解の個数を調べると

　　　a<-
5

4
 のとき 0 個，a=-

5

4
 のとき 2 個，-

5

4
<a<-1 のとき 4 個，

　　　a=-1 のとき 3 個，-1<a<1 のとき 2 個，a=1 のとき 1 個，

　　　1<a のとき 0 個


