
次の式を�UVLQ � 
�K D �の形に変形せよ。ただし，U!�，�S�D�S�とする。１.

���　�(� VLQK�FRVK　　　　　　　����　�VLQ K�(� FRVK

���　�VLQ K�FRVK　　　　　　　　　���　�VLQ K�FRVK

次の式を�UVLQ � 
�K D �の形に表せ。ただし，U!�，�S�D�S�とする。２.

���　�VLQ K�FRVK　　　　����　VLQ K�(� FRVK　　　�����　(� VLQ K��FRVK

VLQK�FRV  K
�

�
�のとき，VLQ K�FRVK �の値を求めよ。ただし，S�K�

�

�
S�とする。３.

次の���直線の作る角�K�を求めよ。ただし，���K�����とする。４.

　　　�[�\�� �，[��\�� �

関数�I � 
K  VLQ�K���VLQK 
�FRVK ���を考える。ただし，���K��S�とする。５.

���　W VLQK�FRVK �とおくとき，�I � 
K �を�W�の式で表せ。

���　W�のとりうる値の範囲を求めよ。

���　I � 
K �の最大値と最小値を求め，そのときの�K�の値を求めよ。
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次の左辺を右辺をそれぞれ計算し，等式が成り立つことを証明せよ。６.

　　　　　　　　�FRV�D�VLQ�D �FRVD 
�VLQD �� 
��VLQ�D

次の関数の最大値と最小値を求めよ。ただし，��K�S�とする。　\ VLQK�(� FRVK７.

��[��S�のとき，次の方程式，不等式を解け。８.

���　VLQ[�(� FRV[ �　　　　　　　　������　(� VLQ[�FRV[ (�

���　VLQ[�(� FRV[　　　　　　　　　　�����　(� �VLQ[ 
�FRV[ !�

��K��S�のとき，次の方程式，不等式を解け。９.

���　VLQ�K FRVK　　　　　　　　　　　�����　FRV�K FRVK

���　VLQ�K�VLQK　　　　　　　　　　　�����　FRV�K!VLQK
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次の左辺を右辺をそれぞれ計算し，等式が成り立つことを証明せよ。６.
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