
直線�[��\�� ��を�A�とする。次のものを求めよ。１.

���　直線�A�に関して，点�3���， 
�� �と対称な点�4�の座標

���　直線�A�に関して，直線�P：�[�\�� ��と対称な直線�Q�の方程式

[\�平面上に���点�$�� 
�，� ，%�� 
�，� �がある。点�3�が直線�A：\ [���上を動くとき，２.

$3�3%�の最小値と，そのときの点�3�の座標を求めよ。

���　次の点と直線の距離を求めよ。３.

　�ア�　原点，�[��\��� �　　　　　�　��イ�　点���， 
�� ，�[��\�� �

　�ウ�　点�� 
��，� ，[ �　　　　　　�　　��エ�　点�� 
�，� ，\ �

���　平行な���直線�[��\�� �，[��\�� ��間の距離を求めよ。

���　点�� 
�，� �から直線�D[��\�� ��に下ろした垂線の長さが�(� �であるとき，定数�D�

　の値を求めよ。

数学演習（線対称�点と直線の距離）5１．６．１３　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(　　)組(　　)番　名前(　　　　　　　　　　　)　



��点�$�� 
�，� ，%�� 
�，� ，&�� 
�，� �について，次のものを求めよ。４.

���　直線�%&�の方程式　　　　　　　　　　���　線分�%&�の長さ

���　点�$�と直線�%&�の距離　　　　　　　������　△$%&�の面積

放物線�\ �[ �上の点�3�と，直線�[��\�� ��上の点との距離の最小値を求めよ。また，５.

そのときの点�3�の座標を求めよ。

[\�平面上の点�$���，���と，[�軸上の点�%�および直線�\ [�上の点�&�からなる�△$%&�全６.

体からなる集合を�6�とする。6�に属する�△$%&�で，周囲の長さ�$%�%&�&$�が最小

になるのは，%�の�[�座標が�
ア

，&�の�[�座標が
イ

�のときであり，そのときの

周囲の長さは，$%�%&�&$ 
ウ

�である。

��D�(� �とする。��直線�@：\ ��[，P：\ (� [��，Q：\ D[�がある。@�と�P�７.

の交点を�$，P�と�Q�の交点を�%，Q�と�@�の交点を�&�とする。

���　��点�$，%，&�の座標を求めよ。　　　�����　△$%&�の面積�6�を�D�で表せ。

���　�△$%&�の面積�6�が最小となる�D�を求めよ。また，そのときの�6�を求めよ。



直線�[��\�� ��を�A�とする。次のものを求めよ。１.

���　直線�A�に関して，点�3���， 
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���　A，P�の方程式を連立して解くと　　[ �，\ �

　ゆえに，��直線�A，P�の交点�5�の座標は　　�� 
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　また，点�3�の座標を直線�P�の方程式に代入すると，

　�･��� 
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�，� ，%�� 
�，� �がある。点�3�が直線�A：\ [���上を動くとき，２.

$3�3%�の最小値と，そのときの点�3�の座標を求めよ。
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�，� �から直線�D[��\�� ��に下ろした垂線の長さが�(� �であるとき，定数�D�

　の値を求めよ。
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��点�$�� 
�，� ，%�� 
�，� ，&�� 
�，� �について，次のものを求めよ。４.

���　直線�%&�の方程式　　　　　　　　　　���　線分�%&�の長さ

���　点�$�と直線�%&�の距離　　　　　　　������　△$%&�の面積
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放物線�\ �[ �上の点�3�と，直線�[��\�� ��上の点との距離の最小値を求めよ。また，５.

そのときの点�3�の座標を求めよ。
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の交点を�$，P�と�Q�の交点を�%，Q�と�@�の交点を�&�とする。

���　��点�$，%，&�の座標を求めよ。　　　�����　△$%&�の面積�6�を�D�で表せ。

���　�△$%&�の面積�6�が最小となる�D�を求めよ。また，そのときの�6�を求めよ。
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