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次の等式を満たす実数�[，\�の値を求めよ。�� 
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次の���次方程式の���つの解の間に�>　@�内の関係があるとき，定数�D�の値，および���つの３.

解を求めよ。　　 �[ ��D 
�� [�D �　>���つの解の比が��：��@

�[ � �[ ���を，係数の範囲が，�ア�　有理数　�イ�　実数　�ウ�　複素数　の各場合につ４.

いて因数分解せよ。

和��，積��であるような���つの数を求めよ。５.

�[ �� �[ �D[���を�[���で割ると余りが���であるように，定数�D�の値を定めよ。６.

D�は定数とする。��次方程式� �[ ����D 
�� [�� �D �� ��がともに負である実数解をもつ７.

とき，D�の値の範囲を求めよ。

多項式�3 � 
[ �を�[���で割ると�－��余り，[���で割ると���余る。3 � 
[ �を��[ 
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�� �で８.

割ったときの余りを求めよ。
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次の方程式を解け。９.
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��の���乗根のうち，虚数であるものの���つを�[�とする。次の式の値を求めよ。10.
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方程式� �[ � �D[ �E[��� ��の���つの解が����L�であるとき，実数の定数�D，E�の値と11.

他の解を求めよ。

��次方程式� �[ ��D 
�� �[ ��D ��について，次の問いに答えよ。12.

���　[ ��を解にもつことを示せ。

���　この方程式が���を���重解としてもつように，定数�D�の値を定めよ。

���　この方程式が���以外の解を���重解としてもつように，定数�D�の値を定めよ。
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方程式� �[ � �D[ �E[��� ��の���つの解が����L�であるとき，実数の定数�D，E�の値と11.

他の解を求めよ。
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