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$% ��，%& �，&$ ��である�△$%&�に

おいて，�$�およびその外角の二等分線が辺

%&�またはその延長と交わる点を，それぞれ

'，(�とする。このとき，線分�'(�の長さを

求めよ。
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右の図で，点�2�は�△$%&�の

外心である。角�D，E�を求め

よ。
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右の図で，点�,�は�

△$%&�の内心であ

る。次のものを求め

よ。
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���　$,�,'

３.

△$%&�の重心を�*，直線�$*，%*�と辺�%&，$&�の交点をそれぞれ�'，(�とする。また，４.

点�(�を通り�%&�に平行な直線と直線�$'�の交点を�)�とする。

���　$' D�とおくとき，線分�$*，)*�の長さを�D�を用いて表せ。

���　面積比�△*%'：△$%&�を求めよ。

$% (� ，%& D，&$ (� �である�△$%&�において，辺�%&，$&�の中点をそれぞ５.

れ�0，1�とする。

���　$0 ��のとき，D�の値を求めよ。

���　D�が�����の値のとき，線分�%1�の長さを求めよ。

△$%&�の辺�$%�を��：��に内分する点を�'，辺�$&�を��：��に内分する点を�(�とし，６.

%(�と�&'�の交点と点�$�を結ぶ直線が�%&�と交わる点を�)�とするとき，比�%)：)&�を

求めよ。

△$%&�の辺�$%�を��：��に内分する点を�'，線分�%&�を��：��に内分する点を�(，$(７.

と�&'�の交点を�)�とするとき，次の比を求めよ。

� 
� 　$)：)(　　　　　　　　　　　　　　� 
� 　')：)&

���辺の長さが次のような�△$%&�が存在するかどうかを調べよ。８.

� 
� 　$% �，%& �，&$ �　　　　　　�� 
� 　$% �，%& ��，&$ ��

� 
� 　$% �，%& �，&$ ��である�△$%&�の���つの角の大小を調べよ。９.

� 
� 　�$ ���，�% ����である�△$%&�の���つの辺の長さの大小を調べよ。

次の図において，[�を求めよ。ただし，����の点�2�は円の中心である。10.
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△$%&�の内接円と辺�%&，&$，$%�の接点を，それぞれ�3，4，5�とする。次の問いに11.

答えよ。

���　$% �，$& �，$5 ��のとき，線分�$4，%&�の長さを求めよ。

���　$% �，%& ��，&$ ��のとき，線分�&4�の長さを求めよ。

次の図において，D，E�を求めよ。ただし，A�は円�2�の接線であり，点�$�は接点である。12.

また�346&%�である。

���

2

%

& ����

D

$

���

@

��� ���

���

D
$

%

&

2

@
D

%&

3

'

E

$

2

@

��� ���

4

次の図において，[�の値を求めよ。ただし，����の�37�は円の接線である。13.
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右の図において，��円�2，2 ��は外接しており，$，%�は

それぞれ���円�2，2 ��の共通接線と円�2，2 ��との接点で

ある。円�2，2 ��の半径をそれぞれ��������とするとき，線

分�$%�の長さを求めよ。

14.

$

%

&

'
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)

右の図の三角柱�$%&�'()�において，$% $'，

�%$&＝���，�$%&＝����である。

���　辺�%&�と垂直な辺をすべてあげよ。

���　辺�%&�とねじれの位置にある辺をすべてあげよ。

���　次の���直線のなす角�K�を求めよ。ただし，���K����

　とする。

　�ア�　$&，%(　　�イ�　$&，()　　�ウ�　$(，&)

15.

次のような凸多面体の，面の数�I，辺の数�H，頂点の数�Y�を，それぞれ求めよ。16.

���　���個の正五角形と����個の正六角形の面からなる凸多面体

���　右の図のように，正四面体の各辺を���等分する点を通る平面

　で，すべてのかどを切り取ってできる凸多面体

�

.
�FP

��辺の長さが���FPの立方体がある。この立方体の各面の対

角線の交点���個を頂点とする立体�.�は，正八面体である。

.�の体積を求めよ。

17.

$% �����%& ��である長方形�$%&'�において，辺�&'�の中点を�0�とする。辺�%&�上18.

を点�3�が動くとき，$3�30�の最小値を求めよ。

���　与えられた線分�$%�を��：��に内分する点を作図せよ。19.

���　与えられた線分�$%�を��：��に外分する点を作図せよ。
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$% ��，%& �，&$ ��である�△$%&�に

おいて，�$�およびその外角の二等分線が辺

%&�またはその延長と交わる点を，それぞれ

'，(�とする。このとき，線分�'(�の長さを

求めよ。
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右の図で，点�2�は�△$%&�の

外心である。角�D，E�を求め

よ。
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右の図で，点�,�は�

△$%&�の内心であ

る。次のものを求め
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△$%&�の重心を�*，直線�$*，%*�と辺�%&，$&�の交点をそれぞれ�'，(�とする。また，４.

点�(�を通り�%&�に平行な直線と直線�$'�の交点を�)�とする。

���　$' D�とおくとき，線分�$*，)*�の長さを�D�を用いて表せ。

���　面積比�△*%'：△$%&�を求めよ。
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　　　　　　△$%' �△*%'

　よって　　△$%& �△*%'

　したがって　　△*%'：△$%& �：�

$% (� ，%& D，&$ (� �である�△$%&�において，辺�%&，$&�の中点をそれぞ５.

れ�0，1�とする。

���　$0 ��のとき，D�の値を求めよ。

���　D�が�����の値のとき，線分�%1�の長さを求めよ。
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%(�と�&'�の交点と点�$�を結ぶ直線が�%&�と交わる点を�)�とするとき，比�%)：)&�を

求めよ。
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次の図において，[�を求めよ。ただし，����の点�2�は円の中心である。10.
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△$%&�の内接円と辺�%&，&$，$%�の接点を，それぞれ�3，4，5�とする。次の問いに11.

答えよ。

���　$% �，$& �，$5 ��のとき，線分�$4，%&�の長さを求めよ。

���　$% �，%& ��，&$ ��のとき，線分�&4�の長さを求めよ。
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　すなわち　　　　&4 �

次の図において，D，E�を求めよ。ただし，A�は円�2�の接線であり，点�$�は接点である。12.

また�346&%�である。
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 解説
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���　直線�A�上に点�'�を右の図のようにとると
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　また，直線�A�上に点�'�を右の図のようにとると
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���　346&%�から　D��$%' ���

　また　　　�$%' �'$3 ���

　よって　　D ������� ���

　次に，四角形�$%&'�は円に内接するから

　　　　　　�&'$ �������� ����

　また　　　�%'$ �%$4 ���

　よって　　E �������� ���

次の図において，[�の値を求めよ。ただし，����の�37�は円の接線である。13.
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右の図において，��円�2，2 ��は外接しており，$，%�は

それぞれ���円�2，2 ��の共通接線と円�2，2 ��との接点で

ある。円�2，2 ��の半径をそれぞれ��������とするとき，線

分�$%�の長さを求めよ。
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2$�$%����2 �%�$%�であるから　　�

　　　　　$+ 2 �% �

△22 �+�は直角三角形であるから

　　　　　 �2+ �2 � �+  �22 �

ここで　　22 � ��� ��，　2+ 2$�$+ ��� �

2 �+!��であるから

　　　　　2 �+ ( ��22 � �2+  ( ���� ��  (��  �(�

$% 2 �+�であるから　　$% �(�

$

%

&

'

(

)

右の図の三角柱�$%&�'()�において，$% $'，

�%$&＝���，�$%&＝����である。

���　辺�%&�と垂直な辺をすべてあげよ。

���　辺�%&�とねじれの位置にある辺をすべてあげよ。

���　次の���直線のなす角�K�を求めよ。ただし，���K����

　とする。

　�ア�　$&，%(　　�イ�　$&，()　　�ウ�　$(，&)

15.

S　���　辺�$%，$'，%(，&)，'(　　���　辺�$'，'(，')

　　　���　�ア�　K ���　　�イ�　K ���　　�ウ�　K ���

 解説

���　辺�$%，$'，%(，&)，'(

���　辺�%&�とねじれの位置にある辺は�%&�と同じ平面上にない辺であるから

　　　　　　　　辺�$'，'(，')

���　�ア�　��直線�$&，%(�のなす角は���直線�$&，$'�のなす角と等しい。

　　よって　　　K �&$' ���

　�イ�　��直線�$&，()�のなす角は���直線�$&，%&�のなす角と等しい。

　　よって　　　K �$&% ������ 
���� ���  ���

　�ウ�　��直線�$(，&)�のなす角は���直線�$(，$'�のなす角と等しい。

　　$% $'�より，四角形�$'(%�は正方形であるから，△$'(�は直角二等辺三角形

　　である。

　　よって　　　K �'$( ���

次のような凸多面体の，面の数�I，辺の数�H，頂点の数�Y�を，それぞれ求めよ。16.

���　���個の正五角形と����個の正六角形の面からなる凸多面体

���　右の図のように，正四面体の各辺を���等分する点を通る平面

　で，すべてのかどを切り取ってできる凸多面体

S　���　I ��，H ��，Y ��　　���　I �，H ��，Y ��

 解説

���　面の数は　　I ����� ��

　辺の数は　　　H ������� 
��� 	� ��

　オイラーの多面体定理から　　Y������ �

　よって　　　　Y ��

���　��つのかどを切り取ると，新しい面として正三角形が���つできる。

　正三角形は���個できるから，この数だけ正四面体より面の数が増える。

　よって，面の数は　　I ��� �

　辺の数は　　　　　　H ������ 
�� 	� ��

　オイラーの多面体定理から　　Y����� �

　よって　　　　　　　Y ��

�

.
�FP

��辺の長さが���FPの立方体がある。この立方体の各面の対

角線の交点���個を頂点とする立体�.�は，正八面体である。

.�の体積を求めよ。

17.

S　��� �FP

 解説
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��FP

��FP

3

7

68

5

右の図のように頂点�$～8�を定める。

立体�.�の体積は，正四角錐�3－5678�の体積の���倍で

ある。

正四角錐�3－5678�の底面は，正方形�5678�で，その

面積は　　　　
�

�
���� ���� 


�FP ��

�また，正四角錐の高さは　　���	� ���FP�

よって，立体�.�の体積は

　　　　　　　�
�

�
��� ��� �� ���� 


�FP

$% �����%& ��である長方形�$%&'�において，辺�&'�の中点を�0�とする。辺�%&�上18.

を点�3�が動くとき，$3�30�の最小値を求めよ。

S　�

 解説

�

�

�

$ '

% &
3

$ � '�

0

3

辺�%&�に関して点�$，'�と対称な点をそれぞれ�$ �，'�

とする。

このとき，$3 $�3�であるから

　　　　　　$3�30 $�3�30�$ �0

よって，��点�$ �，3，0�が一直線上にあるとき，

$3�30�は最小となり，その最小値は線分�$ �0�の長さ

に等しい。

直角三角形�$ �' �0�において

　　　　　　$ � �0  $ � �'� �'� �0  �� � ��  ��

$�0!��であるから　　$ �0 (��  �

したがって，求める最小値は　�

���　与えられた線分�$%�を��：��に内分する点を作図せよ。19.

���　与えられた線分�$%�を��：��に外分する点を作図せよ。

S　���　略　　���　略

 解説

$ %(

&

' A���　①　$�を通り，直線�$%�と異なる半直線�A�を引く。

　　②　A�上に，$�から等間隔に点をとり，��番目の点

　　　を�&，��番目の点を�'�とする。�

　　　このとき　　$&：&' �：�

　　③　&�を通り，直線�%'�に平行な直線を引き，線分

　　　$%�との交点を�(�とする。

$ % (

&
'

A

　　　点�(�が求める点である。

���　①　$�を通り，直線�$%�と異なる半直線�A�を引く。

　　②　A�上に，$�から等間隔に点をとり，��番目の点

　　　を�&，��番目の点を�'�とする。�

�　　　このとき　　$&：&' �：�

　　③　'�を通り，直線�%&�に平行な直線を引き，直線

　　　$%�との交点を�(�とする。

　　　点�(�が求める点である。


