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放物線�\ �[ ���D 
�� [�D�と次の部分が異なる���点で交わるとき，定数�D�の値の範囲２.

を求めよ。

���　[�軸の正の部分　　　　　　　　　　　����　[�軸の負の部分

���次方程式� �[ ��P 
�� [�P�� ��が，次の条件を満たすとき，定数�P�の値の範囲を３.

求めよ。

���　異なる���つの負の解をもつ。　　　　　���　正の解と負の解を���つずつもつ。
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D�[�D���における関数�I � 
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[，\�は正の数とする。[，\�が�[�\ ��を満たしながら変化するとき，[\�の最大値を５.

求めよ。

��[���の範囲において，常に� �[ ��D[��D!��が成り立つように，定数�D�の値の範６.

囲を定めよ。
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