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��次関数�\ �D[ �E[�F�のグラフが右の図のようにな

るとき，次の値の符号を答えよ。

���　D，E，F　　　　　　　����　 �E ��DF
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３. すべての実数�[�に対して，不等式� �[ �D[�D��!��が成り立つように，定数�D�の値の範４.

囲を定めよ。
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D�は定数とする。関数�\ �[ ��[�����D�[�D 
�� �について，最大値および最小値とそ５.

のときの�[�の値を求め，表にまとめよ。

D�は正の定数とする。関数�\ �[ ��[�������[ 
�D �の最大値および最小値とそのときの６.

�[�の値を求め，表にまとめよ。

関数�I� 
[  
�[ �[�� ��[��について７.

���　関数�\ I� 
[ �のグラフをかけ。

���　���[���における最大値および最小値とそのときの�[�の値を求めよ。
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