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���　��次方程式� �[ �N[�N�� ��が異なる���つの実数の解をもつように，定数�N�の値８.
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　定めよ。

放物線�\ �[ �D[�D���が�[�軸と接するように，定数�D�の値を定めよ。また，そのと９.

きの接点の座標を求めよ。

��次関数�\ � �[ ��[�D�が����[���において，常に正の値をとるように，定数�D�の10.

値の範囲を定めよ。

N�は定数とする。放物線�\ �[ ��[��N���と�[�軸の共有点�の個数を，N�の値によっ11.

て場合分けをして求めよ。

���　放物線�\ �� �[ ��[����が�[�軸から切り取る線分の長さを求めよ。12.

���　放物線�\ �[ �D[�D���が�[�軸から切り取る線分の長さが���であるとき，定数�D

　の値を求めよ。

次の放物線と直線の共有点はあるか。あればその座標を求めよ。13.
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次の放物線と直線の共有点はあるか。あればその座標を求めよ。13.
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