
次の���次不等式を解け。１.
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連立不等式��
����[ �[ � �

!���[ �[ � �
�　を解け。２.

不等式� �D[ �E[��!��の解が����[���であるように，定数�D，E�の値を定めよ。３.

放物線�\ �[ �D[���と�[�軸の共有点の個数が，定数�D�の値によってどのように変わる４.

かを調べよ。

��次関数�\ D �[ ��[�D���において，\�の値が常に負であるように，定数�D�の値の範５.

囲を定めよ。

次の���次不等式を解け。ただし，D�は定数とする。　�[ 
�D �[ 
�� !�６.
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���次方程式� �[ ��P 
�� [�P�� ��が，次の条件を満たすとき，定数�P�の値の範囲を７.

求めよ。

���　異なる���つの負の解をもつ。　　　　　���　正の解と負の解を���つずつもつ。

��[���のとき，[�の関数�\ �
� 
��[ �[ ����

�[ 
��[ ����の最大値は�
ア

，最小値８.

は�
イ

�である。

��次方程式�� �[ ��D[�D�� ��の���つの実数の解が���と���の間にあり，他の実数の解が９.

��と���の間にある。このとき，定数�D�の値の範囲を求めよ。
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　　　���　すべての実数　　���　解はない　　���　[ ��

 解説
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　よって，与えられた不等式の解はない。

���　整理すると　　 �[ ��[����　　　　ゆえに　　 �
� 
�[ � ��

　よって，与えられた不等式の解は　　[ ��

[��

���

[

���

連立不等式��
����[ �[ � �

!���[ �[ � �
�　を解け。２.

S　 ��� (� �[ �

 解説
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よって， !��[ ��[ � ��の解は　　 �[ ���� (� ������� (� [　……�②

①，②�の共通範囲を求めると，

��� (� �� ��� (� ��であるから

　　　 ��� (� �[ �

不等式� �D[ �E[��!��の解が����[���であるように，定数�D，E�の値を定めよ。３.
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不等式� �D[ �E[��!��の解が����[���であるための

条件は，放物線�\ �D[ �E[���が上に凸で，[�軸と���点

���，��，��，���で交わることである。

よって　　　　D��　　　　　�……�①

　　　　　　　�D��E�� �　……�②

　　　　　　　D�E�� �　　……�③

②，③�を連立して解くと

　　　　　　　D ��，E ��

これは�①�を満たす。

放物線�\ �[ �D[���と�[�軸の共有点の個数が，定数�D�の値によってどのように変わる４.

かを調べよ。

S　D���，��D�のとき���個，D ���のとき���個，���D���のとき���個

 解説

\ �[ �D[���の係数について，' �D ��･�･� �D ��� �D 
�� �D 
�� ��とする。

この符号を調べると

　　　D���，��D�のとき　'!�　　　このとき，共有点の個数は　��個

　　　　　　D ����のとき　' �　　　このとき，共有点の個数は　��個

　　　　����D�����のとき　'��　　　このとき，共有点の個数は　��個

��次関数�\ D �[ ��[�D���において，\�の値が常に負であるように，定数�D�の値の範５.

囲を定めよ。

S　D���

 解説

　\�の値が常に負であるための条件は，関数のグラフが�常に�[�軸より下側にあるため

　の条件と同じである。したがって

　　　　　　 �[ �の係数について　D��

　　　　　　　　　　　かつ　 �� ��･D�D 
�� ��　……�①

　①�から　������
�D ��D 
�� ��　　　　　　よって　　�D 
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　ゆえに　　D���，��D

　これと�D���との共通範囲を求めて　　D���

次の���次不等式を解け。ただし，D�は定数とする。　�[ 
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S　D���のとき　[�D，��[；　D ��のとき　��以外のすべての実数；

　　　　　��D�のとき　[��，D�[

 解説

　D�と���の大小で場合を分ける。

　>�@　D���のとき　　[�D，��[

　>�@　D ��のとき　　不等式は� �
� 
�[ � !��となる。

　　よって，求める解は　　��以外のすべての実数

　>�@　��D�のとき　　[��，D�[

���次方程式� �[ ��P 
�� [�P�� ��が，次の条件を満たすとき，定数�P�の値の範囲を７.

求めよ。

���　異なる���つの負の解をもつ。　　　　　���　正の解と負の解を���つずつもつ。
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　と，放物線�\ I � 
[ �が�[�軸の負の部分と異なる���点

　で交わることは同じである。そのための条件は，

　次の���つが同時に成り立つことである。
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　よって　　�P��，���P　……�④

　②�から　　P!��　　　　���……�⑤

　③�から　　P���　　　　���……�⑥

　④，⑤，⑥�の共通範囲を求めて
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　分で交わることと同じである。

　そのための条件は，放物線が�\�軸の負の部分と交わ

　ることである。

　よって　　 �I � 
� �　すなわち　P����

　したがって　　　　P��
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　　\ �W ���W���　……�①

で表される。また，��[���のとき
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から，[�の関数�W�のグラフは図�>�@�の実線部分で，W�の

変域は

　　���W���　……�②

よって，②�における�①�の最大値，最小値を求める。
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ゆえに，②�における�W�の関数�\�のグラフは図�>�@�の実

線部分である。

したがって，\�は
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��次方程式�� �[ ��D[�D�� ��の���つの実数の解が���と���の間にあり，他の実数の解が９.

��と���の間にある。このとき，定数�D�の値の範囲を求めよ。
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