
��つの放物線�\ �[ ��[，\ 
�

�
�[ �D[�E�の頂点が一致するように，定数�D，E�の値１.

を定めよ。

放物線�\ �D[ �E[�F�を�[�軸方向に��，\�軸方向に����だけ平行移動すると，放物線２.

\ � �[ ��[���になる。係数�D，E，F�の値を求めよ。

関数�\ �D[ ��D[�E������[ 
�� �の最大値が��，最小値が����であるとき，定数�D，３.

E�の値を求めよ。ただし，D���とする。

[��，\��，�[�\ ��のとき，[\�の最大値，最小値と，そのときの�[，\�の値を求めよ。４.

D�は正の定数，関数�\ �[ ��D[�� �D �����[ 
�� ��の最小値を�P�とする。５.

���　P�を�D�を用いて表せ。

���　P ��のとき，D�の値を求めよ。
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関数�\ �[ ��[�����D�[�D 
�� �の最大値，最小値を，次の����～����の場合について６.

求めよ。
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グラフが次の条件を満たす���次関数を求めよ。７.

���　直線�  [ ��を軸とし，��点�� 
��， � ，�� 
�，� �を通る。

���　��点���，���，���，��，���，���を通る。

次の条件を満たすように，定数�P�の値の範囲を定めよ。８.

���　��次方程式� �[ ��[�P ��が異なる���つの実数の解をもつ。

���　��次方程式�� �[ ��[�P�� ��が実数の解をもたない。

���　��次方程式�� �[ ��[��P�� ��が実数の解をもつ。
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以上より，\ 
�

�
�[ �D[�Eと比較して　　D �

�

�
，E �

�

�

放物線�\ �D[ �E[�F�を�[�軸方向に��，\�軸方向に����だけ平行移動すると，放物線２.

\ � �[ ��[���になる。係数�D，E，F�の値を求めよ。
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したがって，放物線�\ � �[ ��[����を�[�軸方向に���，\�軸方向に���だけ平行移動して
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　これが�\ �D[ �E[�F�と一致するから　　D �，E �，F ��

関数�\ �D[ ��D[�E������[ 
�� �の最大値が��，最小値が����であるとき，定数�D，３.

E�の値を求めよ。ただし，D���とする。
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D���であるから，関数のグラフは上に凸で，

この関数はグラフより，

[ ���で最大値��D�E，

軸より遠いのは[ ��でなく[ �なので，

[ ��で最小値�をとる。

[ �を代入して，\ D･ �� ��D･��E �D�E

つまり，最大値�D�E

条件から　　�D�E �，��D�E ��

これを解いて　　D ��，E �

これは�D���を満たす。

[��，\��，�[�\ ��のとき，[\�の最大値，最小値と，そのときの�[，\�の値を求めよ。４.
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D�は正の定数，関数�\ �[ ��D[�� �D �����[ 
�� ��の最小値を�P�とする。５.

���　P�を�D�を用いて表せ。

���　P ��のとき，D�の値を求めよ。
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 解説

���　軸が直線�  [ ��であるから，求める���次関数は�  \ �D �
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　このグラフが���点���，���，��，���を通るから
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次の条件を満たすように，定数�P�の値の範囲を定めよ。８.

���　��次方程式� �[ ��[�P ��が異なる���つの実数の解をもつ。

���　��次方程式�� �[ ��[�P�� ��が実数の解をもたない。

���　��次方程式�� �[ ��[��P�� ��が実数の解をもつ。
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