
関数�\ �[ ��D[�D�����[ 
�� �の最小値が����であるように，定数�D�の値を定めよ。１.

定義域を���[���とする関数�I � 
[  
�D[ ��D[�E�の最大値が��，最小値が����のとき�２.

定数�D，E�の値を求めよ。

ある放物線を，[�軸方向に���，\�軸方向に����だけ平行移動し，更に�[�軸に関して対称３.

移動したら，放物線�\ �[ ��[���に移った。もとの放物線の方程式を求めよ。

��次関数�\ �D[ �E[�F�のグラフを�[�軸方向に���，\�軸方向に���だけ平行移動すると�４.

��点����，���，���，���，��，����を通る。D，E，F�の値を求めよ。

��次方程式� �[ �[�N ��が実数の解をもつ�N�の値の範囲は�
ア

�である。��次方程５.

式� �[ �[�N �， �[ �N[�� ��がともに実数の解をもつような�N�の値の範囲は

イ

，少なくとも一方が実数の解をもつような�N�の値の範囲は�
ウ

�である。

N�は定数とする。関数�\ �[ ��N[���N�の最小値を�0 � 
N �とする。0 � 
N �の最大値とそ６.

のときの�N�の値を求めよ。
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関数�\ � �[ ��D[�������[ 
�� �の最大値および最小値とそのときの�[�の値を求め，表７.

にまとめよ。

以下，答えは必ず\ �D[ �E[�F�の形で答えること。８.

���　グラフが�[ �
�

�
�で�[�軸に接し，点�� 
��，� �を通るような���次関数を求めよ。

���　グラフが���点���，��，��，���で�[�軸と交わり，かつ最大値が���である���次関数を求

　めよ。

[�が����[���の範囲を動くとき９.
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の最大値，最小値と，そのときの�[�の値を求めよ。
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