
1 次の関数を微分せよ。

（1）y = x−4

解答

y′ = −4x−5

解説

y′ = (−4)x−4−1

= −4x−5

（2）y =
1

x5

解答

y′ = − 5

x6

解説

y =
1

x5
= x−5 より

y′ = (−5)x−5−1

= −5x−6

= − 5

x6

（3）y =
5

4x3

解答

y′ = − 15

4x4

解説

y =
5

4x3
=

5

4
x−3 より

y′ =
5

4
· (−3)x−3−1

= − 15

4
x−4

= − 15

4x4

（4）y = (3x2 − 1)(2x + 1)

解答

y′ = 18x2 + 6x − 2

解説

積の微分より

y′ = (3x2 − 1)′(2x + 1) + (3x2 − 1)(2x + 1)′

= 6x · (2x + 1) + (3x2 − 1) · 2
= (12x2 + 6x) + (6x2 − 2)

= 18x2 + 6x − 2

（5）y = (4x2 − 5x − 2)(−x2 + 6)

解答

y′ = −16x3 + 15x2 + 52x − 30

解説

積の微分より

y′ = (4x2 − 5x − 2)′(−x2 + 6)

+(4x2 − 5x − 2)(−x2 + 6)′

= (8x − 5)(−x2 + 6) + (4x2 − 5x − 2)(−2x)

= (−8x3 + 5x2 + 48x − 30) + (−8x3 + 10x2 + 4x)

= −16x3 + 15x2 + 52x − 30

（6）y = (2x2 − 5)(5x2 + 3x − 2)

解答

y′ = 40x3 + 18x2 − 58x − 15

解説

積の微分より

y′ = (2x2 − 5)′(5x2 + 3x − 2)

+(2x2 − 5)(5x2 + 3x − 2)′

= 4x(5x2 + 3x − 2) + (2x2 − 5)(10x + 3)

= (20x3 + 12x2 − 8x) + (20x3 + 6x2 − 50x − 15)

= 40x3 + 18x2 − 58x − 15

（7）y = (−x3 + 3x2 + 8)(2x3 − 4x + 5)

解答

y′ = −12x5 + 30x4 + 16x3 − 3x2 + 30x − 32

解説

積の微分より

y′ = (−x3 + 3x2 + 8)′(2x3 − 4x + 5)

+(−x3 + 3x2 + 8)(2x3 − 4x + 5)′

= (−3x2 + 6x)(2x3 − 4x + 5)

+(−x3 + 3x2 + 8)(6x2 − 4)

= (−6x5 + 12x4 + 12x3 − 39x2 + 30x)

+(−6x5 + 18x4 + 4x3 + 36x2 − 32)

= −12x5 + 30x4 + 16x3 − 3x2 + 30x − 32

（8）y = (x + 2)(x − 1)(x − 5)

解答

y′ = 3x2 − 8x − 7

解説

積の微分より

y′ = (x + 2)′(x − 1)(x − 5)

+(x + 2)(x − 1)′(x − 5)

+(x + 2)(x − 1)(x − 5)′

= 1 · (x − 1)(x − 5)

+(x + 2) · 1 · (x − 5)

+(x + 2)(x − 1) · 1
= (x2 − 6x + 5) + (x2 − 3x − 10) + (x2 + x − 2)

= 3x2 − 8x − 7

（9）y = (x3 − 2)(x2 + 1)(x − 1)

解答

y′ = 6x5 − 5x4 + 4x3 − 9x2 + 4x − 2

解説

積の微分より

y′ = (x3 − 2)′(x2 + 1)(x − 1)

+(x3 − 2)(x2 + 1)′(x − 1)

+(x3 − 2)(x2 + 1)(x − 1)′

= 3x2 · (x2 + 1)(x − 1)

+(x3 − 2) · 2x · (x − 1)

+(x3 − 2)(x2 + 1) · 1
= (3x5 − 3x4 + 3x3 − 3x2)

+(2x5 − 2x4 − 4x2 + 4x)

+(x5 + x3 − 2x2 − 2)

= 6x5 − 5x4 + 4x3 − 9x2 + 4x − 2



2 次の関数を微分せよ。

（1）y =
1

x + 1

解答

y′ = − 1

(x + 1)2

解説

商の微分より

y′ = − (x + 1)′

(x + 1)2

= − 1

(x + 1)2

（2）y =
3x

x + 4

解答

y′ =
12

(x + 4)2

解説

商の微分より

y′ =
(3x)′(x + 4) − 3x(x + 4)′

(x + 4)2

=
3 · (x + 4) − 3x · 1

(x + 4)2

=
3x + 12 − 3x

(x + 4)2

=
12

(x + 4)2

別解

y =
3x

x + 4

=
3(x + 4) − 12

x + 4

=

3(x + 4)//////////

x + 4///////
− 12

x + 4

= 3 − 12 · 1

x + 4

と変形できるので，微分すると

y′ = (3)′ − 12 ·


− (x + 4)′

(x + 4)2

ff

= 0 − 12 ·


− 1

(x + 4)2

ff

=
12

(x + 4)2

（3）y =
1

x2 − 2

解答

y′ = − 2x

(x2 − 2)2

解説

商の微分より

y′ = − (x2 − 2)′

(x2 − 2)2

= − 2x

(x2 − 2)2

（4）y =
x + 3

2x2 − 1

解答

y′ = − 2x2 + 12x + 1

(2x2 − 1)2

解説

商の微分より

y′ =
(x + 3)′(2x2 − 1) − (x + 3)(2x2 − 1)′

(2x2 − 1)2

=
1 · (2x2 − 1) − (x + 3) · 4x

(2x2 − 1)2

=
2x2 − 1 − 4x2 − 12x

(2x2 − 1)2

=
−2x2 − 12x − 1

(2x2 − 1)2

= − 2x2 + 12x + 1

(2x2 − 1)2

（5）y =
2x

x2 − 3x + 1

解答

y′ = − 2(x + 1)(x − 1)

(x2 − 3x + 1)2

解説

y =
2x

x2 − 3x + 1
を y = 2 · x

x2 − 3x + 1
と考える。

商の微分より

y′ = 2 · (x)′(x2 − 3x + 1) − x(x2 − 3x + 1)′

(x2 − 3x + 1)2

= 2 · 1 · (x2 − 3x + 1) − x · (2x − 3)

(x2 − 3x + 1)2

= 2 · x2 − 3x + 1 − 2x2 + 3x

(x2 − 3x + 1)2

= 2 · −x2 + 1

(x2 − 3x + 1)2

= −2 · x2 − 1

(x2 − 3x + 1)2

= − 2(x + 1)(x − 1)

(x2 − 3x + 1)2

（6）y =
3x2 + 2x + 1

x − 1

解答

y′ =
3(x2 − 2x − 1)

(x − 1)2

解説

商の微分より

y′ =
(3x2 + 2x + 1)′(x − 1) − (3x2 + 2x + 1)(x − 1)′

(x − 1)2

=
(6x + 2) · (x − 1) − (3x2 + 2x + 1) · 1

(x − 1)2

=
(6x2 − 4x − 2) − (3x2 + 2x + 1)

(x − 1)2

=
3x2 − 6x − 3

(x − 1)2

=
3(x2 − 2x − 1)

(x − 1)2



別解

分子の 3x2 + 2x + 1を x− 1で割ると，商が 3x + 5，余

りが 6なので

3x2 + 2x + 1 = (x − 1)(3x + 5) + 6

と書ける。ゆえに y は

y =
3x2 + 2x + 1

x − 1

=
(x − 1)(3x + 5) + 6

x − 1

=
(x − 1)(3x + 5)

x − 1
+

6

x − 1

=

(x − 1)//////////(3x + 5)

x − 1///////
+

6

x − 1

= 3x + 5 + 6 · 1

x − 1

と変形できるので，微分すると

y′ = (3x + 5)′ + 6 ·


− (x − 1)′

(x − 1)2

ff

= 3 + 6 ·


− 1

(x − 1)2

ff

= 3



1 − 2

(x − 1)2

ff

= 3 · (x − 1)2 − 2

(x − 1)2

= 3 · x2 − 2x − 1

(x − 1)2

=
3(x2 − 2x − 1)

(x − 1)2

（7）y =
x3 − 5x − 2

x2

解答

y′ =
x3 + 5x + 4

x3

解説

商の微分より

y′ =
(x3 − 5x − 2)′x2 − (x3 − 5x − 2)(x2)′

(x2)2

=
(3x2 − 5) · x2 − (x3 − 5x − 2) · 2x

x4

=
(3x2 − 5) · x2/1 − (x3 − 5x − 2) · 2x/

x
4/3

=
(3x2 − 5) · x − (x3 − 5x − 2) · 2

x3

=
3x3 − 5x − 2x3 + 10x + 4

x3

=
x3 + 5x + 4

x3

別解

y =
x3 − 5x − 2

x2

=
x3

x2
− 5x

x2
− 2

x2

= x − 5

x
− 2

x2

= x − 5 · x−1 − 2 · x−2

と変形できるので，微分すると

y′ = (x)′ − 5
`

x−1´′ − 2
`

x−2´′

= 1 − 5 · (−1)x−2 − 2 · (−2)x−3

= 1 + 5x−2 + 4x−3

= 1 +
5

x2
+

4

x3

=
x3 + 5x + 4

x3

（8）y =
2x + 1

x2 − x + 2

解答

y′ = − 2x2 + 2x − 5

(x2 − x + 2)2

解説

商の微分より

y′ =
(2x + 1)′(x2 − x + 2) − (2x + 1)(x2 − x + 2)′

(x2 − x + 2)2

=
2 · (x2 − x + 2) − (2x + 1) · (2x − 1)

(x2 − x + 2)2

=
(2x2 − 2x + 4) − (4x2 − 1)

(x2 − x + 2)2

=
−2x2 − 2x + 5

(x2 − x + 2)2

= − 2x2 + 2x − 5

(x2 − x + 2)2

（9）y =
(x + 1)(x − 2)

x2 + x + 1

解答

y′ =
2x2 + 6x + 1

(x2 + x + 1)2

解説

商の微分より y′ は

{(x + 1)(x − 2)}′(x2 + x + 1) − (x + 1)(x − 2)(x2 + x + 1)′

(x2 + x + 1)2

=
{1 · (x − 2) + (x + 1) · 1}(x2 + x + 1) − (x + 1)(x − 2)(2x + 1)

(x2 + x + 1)2

=
(2x − 1)(x2 + x + 1) − (x2 − x − 2)(2x + 1)

(x2 + x + 1)2

=
(2x3 + x2 + x − 1) − (2x3 − x2 − 5x − 2)

(x2 + x + 1)2

=
2x2 + 6x + 1

(x2 + x + 1)2

3 次の関数を微分せよ。

（1）y = (x + 2)2

解答

y′ = 2(x + 2)

解説

u = x + 2とすると，y = u2 となる。ここで

dy

du
=

d

du

`

u2´

= 2u
du

dx
=

d

dx
(x + 2)

= 1



であるから，連鎖公式より

y′ =
dy

du
· du

dx
= 2u · 1
= 2u

となり，u = x + 2を代入して

y′ = 2(x + 2)

となる。

別解

f(x) = x2，g(x) = x + 2 とすると y = f (g (x)) とな

る。f ′(x) = 2xなので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)
= 2g(x) · (x + 2)′

= 2(x + 2) · (x + 2)′

= 2(x + 2) · 1
= 2(x + 2)

（2）y = (3x2 − 1)3

解答

y′ = 18x(3x2 − 1)2

解説

u = 3x2 − 1とすると，y = u3 となる。ここで

dy

du
=

d

du

`

u3´

= 3u2

du

dx
=

d

dx

`

3x2 − 1
´

= 6x

であるから，連鎖公式より

y′ =
dy

du
· du

dx
= 3u2 · 6x
= 3(3x2 − 1)2 · 6x
= 18x(3x2 − 1)2

別解

f(x) = x3，g(x) = 3x2 − 1とすると y = f (g (x))とな

る。f ′(x) = 3x2 なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= 3 {g(x)}2 · (3x2 − 1)′

= 3(3x2 − 1)2 · (3x2 − 1)′

= 3(3x2 − 1)2 · 6x
= 18x(3x2 − 1)2

（3）y = (2x2 + 3)5

解答

y′ = 20x(2x2 + 3)4

解説

u = 2x2 + 3とすると，y = u5 となる。ここで

dy

du
=

d

du

`

u5´

= 5u4

du

dx
=

d

dx

`

2x2 + 3
´

= 4x

であるから，連鎖公式より

y′ =
dy

du
· du

dx
= 5u4 · 4x
= 5(2x2 + 3)4 · 4x
= 20x(2x2 + 3)4

別解

f(x) = x5，g(x) = 2x2 + 3とすると y = f (g (x))とな

る。f ′(x) = 5x4 なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= 5 {g(x)}4 · (2x2 + 3)′

= 5(2x2 + 3)4 · (2x2 + 3)′

= 5(2x2 + 3)4 · 4x
= 20x(2x2 + 3)4

（4）y = (2x2 − 3x + 5)2

解答

y′ = 2(4x − 3)(2x2 − 3x + 5)

解説

u = 2x2 − 3x + 5とすると，y = u2 となる。ここで

dy

du
=

d

du

`

u2´

= 2u
du

dx
=

d

dx

`

2x2 − 3x + 5
´

= 4x − 3

であるから，連鎖公式より

y′ =
dy

du
· du

dx
= 2u · (4x − 3)
= 2(2x2 − 3x + 5) · (4x − 3)
= 2(4x − 3)(2x2 − 3x + 5)

別解

f(x) = x2，g(x) = 2x2 − 3x+5とすると y = f (g (x))

となる。f ′(x) = 2xなので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)
= 2 {g(x)} · (2x2 − 3x + 5)′

= 2(2x2 − 3x + 5) · (2x2 − 3x + 5)′

= 2(2x2 − 3x + 5) · (4x − 3)
= 2(4x − 3)(2x2 − 3x + 5)

（5）y = (x4 − 4x2 + 2)3

解答

y′ = 12x(x2 − 2)(x4 − 4x2 + 2)2

解説

u = x4 − 4x2 + 2とすると，y = u3 となる。ここで

dy

du
=

d

du

`

u3´

= 3u2

du

dx
=

d

dx

`

x4 − 4x2 + 2
´

= 4x3 − 8x

であるから，連鎖公式より

y′ =
dy

du
· du

dx
= 3u2 · (4x3 − 8x)
= 3(x4 − 4x2 + 2)2 · (4x3 − 8x)
= 3(4x3 − 8x)(x4 − 4x2 + 2)2

= 3 · 4x(x2 − 2)(x4 − 4x2 + 2)2

= 12x(x2 − 2)(x4 − 4x2 + 2)2



別解

f(x) = x3，g(x) = x4 − 4x2 +2とすると y = f (g (x))

となる。f ′(x) = 3x2 なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= 3 {g(x)}2 · (x4 − 4x2 + 2)′

= 3(x4 − 4x2 + 2)2 · (x4 − 4x2 + 2)′

= 3(x4 − 4x2 + 2)2 · (4x3 − 8x)
= 12x(x2 − 2)(x4 − 4x2 + 2)2

（6）y =
1

(5x + 3)2

解答

y′ = − 10

(5x + 3)3

解説

u = 5x + 3とすると，y =
1

u2
となる。ここで

dy

du
=

d

du

„

1

u2

«

=
d

du

`

u−2´

= −2u−3

du

dx
=

d

dx
(5x + 3)

= 5

であるから，連鎖公式より

y′ =
dy

du
· du

dx

= −2u−3 · 5

= −2(5x + 3)−3 · 5

= −2 · 1

(5x + 3)3
· 5

= − 10

(5x + 3)3

別解

f(x) =
1

x2
，g(x) = 5x + 3とすると y = f (g (x))と

なる。ここで f(x) =
1

x2
= x−2 より f ′(x) = −2x−3

なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= −2 {g(x)}−3 · (5x + 3)′

= −2(5x + 3)−3 · (5x + 3)′

= −2(5x + 3)−3 · 5

= − 10

(5x + 3)3

（7）y =
1

(2x3 − 5)3

解答

y′ = − 18x2

(2x3 − 5)4

解説

u = 2x3 − 5とすると，y =
1

u3
となる。ここで

dy

du
=

d

du

„

1

u3

«

=
d

du

`

u−3´

= −3u−4

du

dx
=

d

dx

`

2x3 − 5
´

= 6x2

であるから，連鎖公式より

y′ =
dy

du
· du

dx

= −3u−4 · 6x2

= −3(2x3 − 5)−4 · 6x2

= −3 · 1

(2x3 − 5)4
· 6x2

= − 18x2

(2x3 − 5)4

別解

f(x) =
1

x3
，g(x) = 2x3 − 5とすると y = f (g (x))と

なる。ここで f(x) =
1

x3
= x−3 より f ′(x) = −3x−4

なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= −3 {g(x)}−4 · (2x3 − 5)′

= −3(2x3 − 5)−4 · (2x3 − 5)′

= −3(2x3 − 5)−4 · 6x2

= − 18x2

(2x3 − 5)4

（8）y =

„

x +
1

x

«3

解答

y′ = 3

„

1 − 1

x2

«„

x +
1

x

«2

解説

u = x +
1

x
とすると，y = u3 となる。ここで

dy

du
=

d

du

`

u3´

= 3u2

du

dx
=

d

dx

„

x +
1

x

«

= 1 − (x)′

x2

= 1 − 1

x2

であるから，連鎖公式より

y′ =
dy

du
· du

dx

= 3u2 ·
„

1 − 1

x2

«

= 3

„

x +
1

x

«2

·
„

1 − 1

x2

«

= 3

„

1 − 1

x2

«„

x +
1

x

«2



別解

f(x) = x3，g(x) = x +
1

x
とすると y = f (g (x))とな

る。ここで f ′(x) = 3x2 なので合成関数の微分より

y′ = f ′ (g (x)) · g′(x)

= 3 {g(x)}2 ·
„

x +
1

x

«′

= 3

„

x +
1

x

«2

·
„

x +
1

x

«′

= 3

„

x +
1

x

«2

·
„

1 − 1

x2

«

= 3

„

1 − 1

x2

«„

x +
1

x

«2

4 次の関数を微分せよ。

（1）y = x
3
4

解答

y′ =
3

4
x− 1

4

解説

微分すると

y′ =
“

x
3
4

”′

=
3

4
x

3
4−1

=
3

4
x− 1

4

となる。

参考

関数が指数で表記されているときは，答えも指数で答

える。

（2）y =
1√
x5

解答

y′ = − 5

2
√

x7

解説

y =
1√
x5

=
1

x
5
2

= x− 5
2

であるから微分すると

y′ =
“

x− 5
2

”′

= − 5

2
x− 5

2−1

= − 5

2
x− 7

2

= − 5

2
· 1

x
7
2

= − 5

2
· 1√

x7

= − 5

2
√

x7

となる。

参考

関数が累乗根で表記されているときは，答えも累乗根で

答える。

（3）y =
1

3
√

x7

解答

y′ = − 7

3
3
√

x10

解説

y =
1

3
√

x7

=
1

x
7
3

= x− 7
3

であるから微分すると

y′ =
“

x− 7
3

”′

= − 7

3
x− 7

3−1

= − 7

3
x− 10

3

= − 7

3
· 1

x
10
3

= − 7

3
· 1

3
√

x10

= − 7

3
3
√

x10

となる。

（4）y =
p

x2 + 4x − 1

解答

y′ =
x + 2√

x2 + 4x − 1

解説

u = x2 + 4x − 1 とすると，y =
√

u となる。ここで

y =
√

u = u
1
2 であるから

dy

du
=

d

du

“

u
1
2

”

=
1

2
u

1
2−1

=
1

2
u− 1

2

du

dx
=

d

dx

`

x2 + 4x − 1
´

= 2x + 4

であるから，連鎖公式より

y′ =
dy

du
· du

dx

=
1

2
u− 1

2 · (2x + 4)

=
1

2
(x2 + 4x − 1)−

1
2 · 2(x + 2)

=
1

2

1

(x2 + 4x − 1)
1
2

· 2(x + 2)

=
1

2

1√
x2 + 4x − 1

· 2(x + 2)

=
x + 2√

x2 + 4x − 1



別解

y =
p

x2 + 4x − 1を y =
`

x2 + 4x − 1
´

1
2 と考える。

0

B

B

@

√
x = x

1
2

微分−−→ 1

2
x− 1

2

↑
x2 + 4x − 1

1

C

C

A

合成関数の微分より

y′ =
1

2
(x2 + 4x − 1)−

1
2 · (x2 + 4x − 1)′

=
1

2

1

(x2 + 4x − 1)
1
2

· (2x + 4)

=
1

2

1√
x2 + 4x − 1

· 2(x + 2)

=
x + 2√

x2 + 4x − 1

（5）y =
5
p

x3 − 2

解答

y′ =
3x2

5 5
p

(x3 − 2)4

解説

u = x3 − 2 とすると，y = 5
√

u となる。ここで y =
5
√

u = u
1
5 であるから

dy

du
=

d

du

“

u
1
5

”

=
1

5
u

1
5−1

=
1

5
u− 4

5

du

dx
=

d

dx

`

x3 − 2
´

= 3x2

であるから，連鎖公式より

y′ =
dy

du
· du

dx

=
1

5
u− 4

5 · 3x2

=
1

5
(x3 − 2)−

4
5 · 3x2

=
1

5

1

(x3 − 2)
4
5

· 3x2

=
1

5

1
5
p

(x3 − 2)4
· 3x2

=
3x2

5 5
p

(x3 − 2)4

別解

y =
5
p

x3 − 2を y =
`

x3 − 2
´

1
5 と考える。

0

B

B

@

5
√

x = x
1
5

微分−−→ 1

5
x

4
5

↑
x3 − 2

1

C

C

A

合成関数の微分より

y′ =
1

5
(x3 − 2)−

4
5 · (x3 − 2)′

=
1

5
(x3 − 2)−

4
5 · 3x2

=
1

5

1

(x3 − 2)
4
5

· 3x2

=
1

5

1
5
p

(x3 − 2)4
· 3x2

=
3x2

5 5
p

(x3 − 2)4

（6）y =
1√

x2 + x + 1

解答

y′ = − 2x + 1

2
p

(x2 + x + 1)3

解説

u = x2 + x + 1 とすると，y =
1√
u
となる。ここで

y =
1√
u

= u− 1
2 であるから

dy

du
=

d

du

“

u− 1
2

”

= − 1

2
u− 1

2−1

= − 1

2
u− 3

2

du

dx
=

d

dx

`

x2 + x + 1
´

= 2x + 1

であるから，連鎖公式より

y′ =
dy

du
· du

dx

= − 1

2
u− 3

2 · (2x + 1)

= − 1

2
(x2 + x + 1)−

3
2 · (2x + 1)

= − 1

2

1

(x2 + x + 1)
3
2

· (2x + 1)

= − 1

2

1
p

(x2 + x + 1)3
· (2x + 1)

= − 2x + 1

2
p

(x2 + x + 1)3

別解

y =
1√

x2 + x + 1
を y =

`

x2 + x + 1
´− 1

2 と考える。

0

B

B

@

1√
x

= x− 1
2

微分−−→ − 1

2
x− 3

2

↑
x2 + x + 1

1

C

C

A

合成関数の微分より

y′ = − 1

2
(x2 + x + 1)−

3
2 · (x2 + x + 1)′

= − 1

2
(x2 + x + 1)−

3
2 · (2x + 1)

= − 1

2

1

(x2 + x + 1)
3
2

· (2x + 1)

= − 1

2

1
p

(x2 + x + 1)3
· (2x + 1)

= − 2x + 1

2
p

(x2 + x + 1)3



（7）y =
1√

4 − x2

解答

y′ =
x

p

(4 − x2)3

解説

u = 4 − x2 とすると，y =
1√
u
となる。ここで y =

1√
u

= u− 1
2 であるから

dy

du
=

d

du

“

u− 1
2

”

= − 1

2
u− 1

2−1

= − 1

2
u− 3

2

du

dx
=

d

dx

`

4 − x2´

= −2x

であるから，連鎖公式より

y′ =
dy

du
· du

dx

= − 1

2
u− 3

2 · (−2x)

= − 1

2
(4 − x2)−

3
2 · (−2x)

= − 1

2

1

(4 − x2)
3
2

· (−2x)

= − 1

2

1
p

(4 − x2)3
· (−2x)

=
x

p

(4 − x2)3

別解

y =
1√

4 − x2
を y =

`

4 − x2´− 1
2 と考える。

0

B

B

@

1√
x

= x− 1
2

微分−−→ − 1

2
x− 3

2

↑
4 − x2

1

C

C

A

合成関数の微分より

y′ = − 1

2
(x2 + x + 1)−

3
2 · (4 − x2)′

= − 1

2
(4 − x2)−

3
2 · (−2x)

= − 1

2

1

(4 − x2)
3
2

· (−2x)

= − 1

2

1
p

(4 − x2)3
· (−2x)

=
x

p

(4 − x2)3

（8）y = (3x + 1)2(x − 2)

解答

y′ = (3x + 1)(9x − 11)

解説

積の微分より

y′ = {(3x + 1)2}′(x − 2) + (3x + 1)2(x − 2)′

となる。ここで {(3x + 1)2}′ は合成関数の微分より

{(3x + 1)2}′ = 2(3x + 1) · (3x + 1)′

となるので

y′ = {(3x + 1)2}′(x − 2) + (3x + 1)2(x − 2)′

= 2(3x + 1)(3x + 1)′ · (x − 2) + (3x + 1)2 · 1
= 2(3x + 1) · 3 · (x − 2) + (3x + 1)2 · 1
= 6(3x + 1)(x − 2) + (3x + 1)2

= (3x + 1){6(x − 2) + (3x + 1)}
= (3x + 1)(6x − 12 + 3x + 1)

= (3x + 1)(9x − 11)

となる。

（9）y =
x − 2

(x2 + 1)2

解答

y′ = − 3x2 − 8x − 1

(x2 + 1)3

解説

商の微分より

y′ =
(x − 2)′(x2 + 1)2 − (x − 2){(x2 + 1)2}′

(x2 + 1)4

となる。ここで，{(x2 + 1)2}′ は合成関数の微分より

{(x2 + 1)2}′ = 2(x2 + 1) · (x2 + 1)′

となるので

y′ =
(x − 2)′(x2 + 1)2 − (x − 2){(x2 + 1)2}′

(x2 + 1)4

=
1 · (x2 + 1)2 − (x − 2) · 2(x2 + 1)(x2 + 1)′

(x2 + 1)4

=
1 · (x2 + 1)2 − (x − 2) · 2(x2 + 1) · 2x

(x2 + 1)4

=
(x2 + 1)2 − 4x(x − 2)(x2 + 1)

(x2 + 1)4

=

(x2 + 1)
2/1 − 4x(x − 2)(x2 + 1)///////////

(x2 + 1)
4/3

=
(x2 + 1) − 4x(x − 2)

(x2 + 1)3

=
x2 + 1 − 4x2 + 8x

(x2 + 1)3

=
−3x2 + 8x + 1

(x2 + 1)3

= − 3x2 − 8x − 1

(x2 + 1)3

となる。

5 次の関数を微分せよ。

（1）y =
x

(x4 + 1)2

解答

y′ = − 7x4 − 1

(x4 + 1)3

解説

商の微分より

y′ =
(x)′ · (x4 + 1)2 − x ·

˘

(x4 + 1)2
¯′

(x4 + 1)4



となる。ここで，
˘

(x4 + 1)2
¯′
は合成関数の微分より

˘

(x4 + 1)2
¯′

= 2(x4 + 1) · (x4 + 1)′

となるので

y′ =
(x)′ · (x4 + 1)2 − x · 2(x4 + 1) · (x4 + 1)′

(x4 + 1)4

=
1 · (x4 + 1)2 − x · 2(x4 + 1) · 4x3

(x4 + 1)4

となる。すると分子分母で x4 + 1が約分できるから

y′ =

1 · (x4 + 1)
2/1 − x · 2(x4 + 1)/////////// · 4x3

(x4 + 1)
4/3

=
1 · (x4 + 1) − x · 2 · 4x3

(x4 + 1)3

=
(x4 + 1) − 8x4

(x4 + 1)3

=
−7x4 + 1

(x4 + 1)3

= − 7x4 − 1

(x4 + 1)3

となる。

（2）y =
1

x 3
√

x

解答

y′ = − 4

3x2 3
√

x

解説

商の微分より

y′ = − (x 3
√

x)
′

(x 3
√

x)2

となる。ここで，(x 3
√

x)
′ は積の微分を用いて

y′ = − (x)′ · 3
√

x + x · ( 3
√

x)
′

x2 3
√

x2

= −
(x)′ · 3

√
x + x ·

“

x
1
3

”′

x2 3
√

x2

= −
1 · 3

√
x + x · 1

3
x− 2

3

x2 3
√

x2

= −
3
√

x + x · 1
3

1
3√

x2

x2 3
√

x2

となる。また，分子を通分するために 3
√

xの分母と分子

に 3
3
√

x2 をかけると

3
√

x + x · 1

3

1
3
√

x2

=
3
√

x · 3 3
√

x2

3
3
√

x2
+

x

3
3
√

x2

=
3
√

x · 3 3
√

x2 + x

3
3
√

x2

=
3

3
√

x3 + x

3
3
√

x2

=
3x + x

3
3
√

x2

=
4x

3
3
√

x2

となるから，整理すると

y′ = −
4x

3
3√

x2

x2 3
√

x2

= − 4x

3
3
√

x2
÷ x2 3

√
x2

= − 4x

3
3
√

x2 · x2 3
√

x2

= − 4x

3x2 3
√

x4

= − 4x

3x2 · x 3
√

x

分子分母を xで約分すると

y′ = − 4

3x2 3
√

x

となる。

別解

y =
1

x 3
√

x
について

y =
1

x 3
√

x

=
1

x · x 1
3

=
1

x1+ 1
3

=
1

x
4
3

= x− 4
3

と変形してから微分すると

y′ = − 4

3
x− 4

3−1

= − 4

3
x− 7

3

= − 4

3

1

x
7
3

= − 4

3

1
3
√

x7

= − 4

3

1
3
√

x6 · x

= − 4

3

1

x2 3
√

x

= − 4

3x2 3
√

x

となる。

（3）y = x
p

x2 + 1

解答

y′ =
2x2 + 1√

x2 + 1

解説

積の微分より

y′ = (x)′ ·
p

x2 + 1 + x ·
“

p

x2 + 1
”′

となる。ここで，
`√

x2 + 1
´′
は合成関数の微分より

“

p

x2 + 1
”′

=
n

(x2 + 1)
1
2

o′

=
1

2
(x2 + 1)−

1
2 · (x2 + 1)′



となるので

y′ = (x)′ ·
p

x2 + 1 + x · 1

2
(x2 + 1)−

1
2 · (x2 + 1)′

= 1 ·
p

x2 + 1 + x · 1

2
(x2 + 1)−

1
2 · 2x

=
p

x2 + 1 + x · (x2 + 1)−
1
2 · x

=
p

x2 + 1 + x · 1√
x2 + 1

· x

=
p

x2 + 1 +
x2

√
x2 + 1

となる。通分すると

y′ =
p

x2 + 1 +
x2

√
x2 + 1

=

`√
x2 + 1

´2

√
x2 + 1

+
x2

√
x2 + 1

=
x2 + 1√
x2 + 1

+
x2

√
x2 + 1

=
(x2 + 1) + x2

√
x2 + 1

=
2x2 + 1√

x2 + 1

となる。

（4）y =
x√

2 − x2

解答

y′ =
2

`√
2 − x2

´3

解説

商の微分より

y′ =
(x)′ ·

√
2 − x2 − x ·

`√
2 − x2

´′

`√
2 − x2

´2

となる。ここで，
`√

2 − x2
´′
は合成関数の微分より

“

p

2 − x2
”′

=
n

(2 − x2)
1
2

o′

=
1

2
(2 − x2)−

1
2 · (2 − x2)′

となるので

y′ =
(x)′ ·

√
2 − x2 − x · 1

2
(2 − x2)−

1
2 · (2 − x2)′

`√
2 − x2

´2

=

1 ·
√

2 − x2 + x · 1√
2−x2

· x
`√

2 − x2
´2

=

√
2 − x2 + x2√

2−x2

`√
2 − x2

´2

となる。分子から根号をなくすために，分子分母に√
2 − x2 をかけると

y′ =

`√
2 − x2

´2
+ x2

`√
2 − x2

´3

=
(2 − x2) + x2

`√
2 − x2

´3

=
2

`√
2 − x2

´3

となる。

（5）y =

s

1 +
1√
x

解答

y′ = − 1

4x
p

x +
√

x

解説

y =

s

1 +
1√
x
を y =

„

1 +
1√
x

«
1
2

と考える。合

成関数の微分より

y′ =
1

2

„

1 +
1√
x

«− 1
2

·
„

1 +
1√
x

«′

となる。ここで，
“

1 + 1√
x

”′
は

„

1 +
1√
x

«′

=
“

1 + x− 1
2

”′

= 0 +

„

− 1

2

«

x− 1
2−1

= − 1

2
x− 3

2

となるので

y′ =
1

2

„

1 +
1√
x

«− 1
2

·
„

− 1

2
x− 3

2

«

= − 1

4

„

1 +
1√
x

«− 1
2

· x− 3
2

= − 1

4

1
q

1 + 1√
x

· 1√
x3

= − 1

4

1
q

1 + 1√
x

· 1

x
√

x

となる。さらに，分母にある根号どうしをかけると

y′ = − 1

4

1
q

1 + 1√
x

· 1

x
√

x

= − 1

4

1

x
√

x
q

1 + 1√
x

= − 1

4

1

x

r

x
“

1 + 1√
x

”

となり，
1√
x
を有理化して

√
x

x
と考えてから根号内

を展開すると

y′ = − 1

4

1

x

r

x
“

1 + 1√
x

”

= − 1

4

1

x

r

x
“

1 +
√

x
x

”

= − 1

4

1

x
q

x + x ·
√

x
x

= − 1

4

1

x
p

x +
√

x

となる。したがって

y′ = − 1

4x
p

x +
√

x

となる。



（6）y =
x

x +
√

1 + x2

解答

y′ =
2x2 + 1 − 2x

√
1 + x2

√
1 + x2

解説

商の微分より

y′ =
(x)′ ·

`

x +
√

1 + x2
´

− x ·
`

x +
√

1 + x2
´′

`

x +
√

1 + x2
´2

=
1 ·
`

x +
√

1 + x2
´

− x ·
n

1 + 1
2

(1 + x2)−
1
2 · (1 + x2)′

o

`

x +
√

1 + x2
´2

=

`

x +
√

1 + x2
´

− x ·
„

1 + 1
2

1√
1+x2

· 2x

«

`

x +
√

1 + x2
´2

=

`

x +
√

1 + x2
´

− x

„

1 + x√
1+x2

«

`

x +
√

1 + x2
´2

分子の括弧内を通分すると

y′ =

`

x +
√

1 + x2
´

− x

„

1 + x√
1+x2

«

`

x +
√

1 + x2
´2

=

`

x +
√

1 + x2
´

− x ·
√

1+x2+x√
1+x2

`

x +
√

1 + x2
´2

となる。すると，分子に x +
√

1 + x2 が 2 つ現れるの

で，因数分解すると

y′ =

`

x +
√

1 + x2
´

− x ·
√

1+x2+x√
1+x2

`

x +
√

1 + x2
´2

=

`

x +
√

1 + x2
´

„

1 − x · 1√
1+x2

«

`

x +
√

1 + x2
´2

となるから，分子分母で x +
√

1 + x2 を約分し，また分

子を通分すると

y′ =

`

x +
√

1 + x2
´

„

1 − x · 1√
1+x2

«

`

x +
√

1 + x2
´2

=

`

x +
√

1 + x2
´

//////////////////////

„

1 − x · 1√
1+x2

«

`

x +
√

1 + x2
´2/1

=

1 − x · 1√
1+x2

x +
√

1 + x2

=

√
1+x2−x√
1+x2

x +
√

1 + x2

=

√
1 + x2 − x√

1 + x2
÷
“

x +
p

1 + x2
”

=

√
1 + x2 − x√

1 + x2
`

x +
√

1 + x2
´

そして，分子分母に x −
√

1 + x2 をかけて

y′ =

√
1 + x2 − x√

1 + x2
`

x +
√

1 + x2
´

=

`√
1 + x2 − x

´ `

x −
√

1 + x2
´

√
1 + x2

`

x +
√

1 + x2
´ `

x −
√

1 + x2
´

=
−
`

x −
√

1 + x2
´ `

x −
√

1 + x2
´

√
1 + x2

n

x2 −
`√

1 + x2
´2
o

=
−
`

x −
√

1 + x2
´2

√
1 + x2

˘

x2 − (1 + x2)2
¯

=
−
n

x2 − 2x
√

1 + x2 +
`√

1 + x2
´2
o

√
1 + x2 { x2 − (1 + x2) }

=
−
˘

x2 − 2x
√

1 + x2 +
`

1 + x2
´ ¯

−
√

1 + x2

=
2x2 + 1 − 2x

√
1 + x2

√
1 + x2

となる。

別解

y =
x

x +
√

1 + x2
について，分母を有理化すると

y =
x

x +
√

1 + x2

=
x
`

x −
√

1 + x2
´

`

x +
√

1 + x2
´ `

x −
√

1 + x2
´

=
x2 − x

√
1 + x2

x2 −
`√

1 + x2
´2

=
x2 − x

√
1 + x2

x2 − (1 + x2)

=
x2 − x

√
1 + x2

−1

= −x2 + x
p

1 + x2

となる。この式を微分すると，積の微分と合成関数の微

分より

y′ = −2x + (x)′ ·
p

1 + x2 + x · 1

2
(1 + x2)−

1
2 · (1 + x2)′

= −2x + 1 ·
p

1 + x2 + x · 1

2
(1 + x2)−

1
2 · 2x

= −2x +
p

1 + x2 + x · (1 + x2)−
1
2 · x

= −2x +
p

1 + x2 + x · 1√
1 + x2

· x

= −2x +
p

1 + x2 +
x2

√
1 + x2

となる。通分すると

y′ = −2x +
p

1 + x2 +
x2

√
1 + x2

=
−2x

√
1 + x2

√
1 + x2

+

`√
1 + x2

´2

√
1 + x2

+
x2

√
1 + x2

=
−2x

√
1 + x2

√
1 + x2

+
1 + x2

√
1 + x2

+
x2

√
1 + x2

=
−2x

√
1 + x2 + (1 + x2) + x2

√
1 + x2

=
2x2 + 1 − 2x

√
1 + x2

√
1 + x2

となる。

6 次の関数を微分せよ。

（1）y = 4x − cos x

解答

y′ = 4 + sin x



解説

y′ = (4x)′ − (cos x)′

= 4 − (− sin x)
= 4 + sin x

（2）y = sin x − tan x

解答

y′ = cos x − 1

cos2 x

解説

y′ = (sin x)′ − (tan x)′

= cos x − 1

cos2 x

（3）y = cos(3x2 − 1)

解答

y′ = −6x sin(3x2 − 1)

解説

0

@

cos x
微分−−→ − sin x

↑
3x2 − 1

1

A

y′ = − sin(3x2 − 1) · (3x2 − 1)′

= − sin(3x2 − 1) · 6x

= −6x sin(3x2 − 1)

（4）y = tan(2x + 3)

解答

y′ =
2

cos2(2x + 3)

解説

0

B

@

tan x
微分−−→ 1

cos2 x
↑

2x + 3

1

C

A

y′ =
1

cos2(2x + 3)
· (2x + 3)′

=
1

cos2(2x + 3)
· 2

=
2

cos2(2x + 3)

（5）y = cos(sin x)

解答

y′ = − cos x {sin(sin x)}

解説

0

B

@

cos x
微分−−→ − sin x

↑
sin x

1

C

A

y′ = {− sin(sin x)} · (sin x)′

= {− sin(sin x)} · cos x

= − cos x {sin(sin x)}

（6）y = tan(sin x)

解答

y′ =
cos x

cos2(sin x)

解説

0

B

B

@

tan x
微分−−→ 1

cos2 x
↑

sin x

1

C

C

A

y′ =



1

cos2(sin x)

ff

· (sin x)′

=



1

cos2(sin x)

ff

· cos x

=
cos x

cos2(sin x)

（7）y = sin x2

解答

y′ = 2x cos x2

解説

0

B

@

sin x
微分−−→ cos x

↑
x2

1

C

A

y′ = cos x2 · (x2)′

= cos x2 · 2x

= 2x cos x2

注意

sin x2 とは，x2 を角度とする sinのことである。例えば，

x = 30◦ ならば，sin x2 = sin 900◦ である。sin xの二乗

は sin2 xと書く。

（8）y = tan x2

解答

y′ =
2x

cos2 x2

解説

0

B

B

@

tan x
微分−−→ 1

cos2 x
↑
x2

1

C

C

A

y′ =

„

1

cos2 x2

«

· (x2)′

=

„

1

cos2 x2

«

· 2x

=
2x

cos2 x2

（9）y = cos3 x

解答

y′ = −3 sin x cos2 x



解説

0

B

@

x3 微分−−→ 3x2

↑
cos x

1

C

A

y′ = 3 cos2 x · (cos x)′

= 3 cos2 x · (− sin x)

= −3 sin x cos2 x

（10）y = tan3 x

解答

y′ =
3 tan2 x

cos2 x

解説

0

B

@

x3 微分−−→ 3x2

↑
cos x

1

C

A

y′ = 3 tan2 x · (tan x)′

= 3 tan2 x ·
„

1

cos2 x

«

=
3 tan2 x

cos2 x

7 次の関数を微分せよ。

（1）y =
1

cos x
解答

y′ =
sin x

cos2 x

解説

商の微分より

y′ = − (cos x)′

cos2 x

= − (− sin x)

cos2 x

=
sin x

cos2 x

（2）y =
1

sin2 x
解答

y′ = − 2 cos x

sin3 x

解説

商の微分より

y′ = − (sin2 x)′

(sin2 x)2

= − 2 sin x · (sin x)′

sin4 x

= − 2 sin x · cos x

sin4 x

= −
2sin x////// · cos x

sin
4/3

x

= − 2 cos x

sin3 x

（3）y = x2 sin(3x + 5)

解答

y′ = x{2 sin(3x + 5) + 3x cos(3x + 5)}

解説

積の微分より

y′ = (x2)′ · sin(3x + 5) + x2 · {sin(3x + 5)}′

= 2x · sin(3x + 5) + x2 · cos(3x + 5) · (3x + 5)′

= 2x · sin(3x + 5) + x2 · cos(3x + 5) · 3
= 2x sin(3x + 5) + 3x2 cos(3x + 5)

= x{2 sin(3x + 5) + 3x cos(3x + 5)}

（4）y = sin 5x cos 3x

解答

y′ = 5 cos 5x cos 3x − 3 sin 5x sin 3x

解説

積の微分より

y′ = (sin 5x)′ · cos 3x + sin 5x · (cos 3x)′

= cos 5x · (5x)′ · cos 3x + sin 5x · (− sin 3x) · (3x)′

= cos 5x · 5 · cos 3x + sin 5x · (− sin 3x) · 3
= 5 cos 5x cos 3x − 3 sin 5x sin 3x

（5）y = sin2 3x

解答

y′ = 3 sin 6x

解説

0

B

@

x2 微分−−→ 2x

↑
sin 3x

1

C

A

合成関数の微分より

y′ = 2 sin 3x · (sin 3x)′

= 2 sin 3x · cos 3x · (3x)′

= 2 sin 3x · cos 3x · 3
= 6 sin 3x cos 3x

ここで，2 倍角の公式より sin 2θ = 2 sin θ cos θ より

θ = 3xとして

y′ = 6 sin 3x cos 3x

= 3 · 2 sin 3x cos 3x

= 3 sin 6x

別解

2倍角の公式より sin2 θ =
1 − cos 2θ

2
より，θ = 3xと

して

y = sin2 3x

=
1 − cos 6x

2

=
1

2
− 1

2
cos 6x



なので，微分して

y′ = 0 − 1

2
(cos 6x)′

= − 1

2
(− sin 6x) · (6x)′

= − 1

2
(− sin 6x) · 6

= 3 sin 6x

（6）y = sin5 x cos 5x

解答

y′ = 5 sin4 x cos 6x

解説

積の微分より

y′ = (sin5 x)′ · cos 5x + sin5 x · (cos 5x)′

= 5 sin4 x · (sin x)′ · cos 5x + sin5 x · (− sin 5x) · (5x)′

= 5 sin4 x · cos x · cos 5x + sin5 x · (− sin 5x) · 5
= 5 sin4 x cos x cos 5x − 5 sin5 x sin 5x

= 5 sin4 x(cos x cos 5x − sin x sin 5x)

ここで，加法定理より

cos α cos β − sin α sin β = cos(α + β)

なので，α = x，β = 5xとして

y′ = 5 sin4 x(cos x cos 5x − sin x sin 5x)

= 5 sin4 x cos(x + 5x)

= 5 sin4 x cos 6x

（7）y = sin4 x cos4 x

解答

y′ =
1

2
sin3 2x cos 2x

解説

積の微分より

y′ = (sin4 x)′ · cos4 x + sin4 x · (cos4 x)′

= 4 sin3 x · (sin x)′ · cos4 x + sin4 x · 4 cos3 x · (cos x)′

= 4 sin3 x · cos x · cos4 x + sin4 x · 4 cos3 x · (− sin x)

= 4 sin3 x cos5 x − 4 sin5 x cos3 x

= 4 sin3 x cos3 x(cos2 x − sin2 x)

= 4(sin x cos x)3(cos2 x − sin2 x)

ここで，2 倍角の公式より sin 2x = 2 sin x cos x と

cos 2x = cos2 x − sin2 xより

sin x cos x =
1

2
sin 2x

cos2 x − sin2 x = cos 2x

を代入して

y′ = 4(sin x cos x)3(cos2 x − sin2 x)

= 4

„

1

2
sin 2x

«3

· cos 2x

= 4 · 1

8
sin3 2x cos 2x

=
1

2
sin3 2x cos 2x

別解

2倍角の公式より

y = sin4 x cos4 x

= (sin x cos x)4

=

„

1

2
sin 2x

«4

=
1

16
sin4 2x

なので，微分して

y′ =
1

16
(sin4 2x)′

=
1

16
· 4 sin3 2x · (sin 2x)′

=
1

16
· 4 sin3 2x · cos 2x · (2x)′

=
1

16
· 4 sin3 2x · cos 2x · 2

=
1

2
sin3 2x cos 2x

（8）y =
cos x√

x

解答

y′ = − 2x sin x + cos x

2x
√

x

解説

商の微分より

y′ =
(cos x)′ ·

√
x − cos x · (

√
x)′

(
√

x)2

=
(cos x)′ ·

√
x − cos x · (x

1
2 )′

(
√

x)2

=
(− sin x) ·

√
x − cos x ·

“

1
2

x− 1
2

”

(
√

x)2

=
(− sin x) ·

√
x − cos x ·

“

1
2
√

x

”

(
√

x)2

分子，分母に 2
√

xをかけて

y′ =
(− sin x) · 2(

√
x)2 − cos x · 1

2(
√

x)3

=
−2x sin x − cos x

2x
√

x

= − 2x sin x + cos x

2x
√

x

8 次の関数を微分せよ。

（1）y =
p

1 + sin2 x

解答

y′ =
sin x cos x
p

1 + sin2 x

解説

y =
p

1 + sin2 x を y =
`

1 + sin2 x
´

1
2 と考える。合

成関数の微分より

y′ =
1

2

`

1 + sin2 x
´− 1

2 ·
`

1 + sin2 x
´′

=
1

2

`

1 + sin2 x
´− 1

2 ·
n

0 +
`

sin2 x
´′
o



となる。
`

sin2 x
´′
も合成関数の微分より

`

sin2 x
´′

= 2 sin x · (sin x)′

より

y′ =
1

2

`

1 + sin2 x
´− 1

2 ·
n

0 +
`

sin2 x
´′
o

=
1

2

`

1 + sin2 x
´− 1

2 · 2 sin x · (sin x)′

=
1

2

`

1 + sin2 x
´− 1

2 · 2 sin x · cos x

=
1

2

1
`

1 + sin2 x
´

1
2

· 2 sin x · cos x

=
1

2

1
p

1 + sin2 x
· 2 sin x · cos x

=
sin x cos x
p

1 + sin2 x

となる。

（2）y = sin
p

x2 + 2x − 1

解答

y′ =
(x + 1) cos

√
x2 + 2x − 1√

x2 + 2x − 1

解説

合成関数の微分より

y′ = cos
p

x2 + 2x − 1 ·
“

p

x2 + 2x − 1
”′

となる。
“

p

x2 + 2x − 1
”′
も合成関数の微分より

“

p

x2 + 2x − 1
”′

=
1

2

`

x2 + 2x − 1
´− 1

2 ·
`

x2 + 2x − 1
´′

より

y′ = cos
p

x2 + 2x − 1 ·
“

p

x2 + 2x − 1
”′

= cos
p

x2 + 2x − 1 · 1

2

`

x2 + 2x − 1
´− 1

2 ·
`

x2 + 2x − 1
´′

= cos
p

x2 + 2x − 1 · 1

2

1

( x2 + 2x − 1)
1
2

· (2x + 2)

= cos
p

x2 + 2x − 1 · 1

2

1√
x2 + 2x − 1

· 2 (x + 1)

=
(x + 1) cos

√
x2 + 2x − 1√

x2 + 2x − 1

となる。

（3）y =

„

tan x +
1

tan x

«2

解答

y′ = − 16 cos 2x

sin3 2x

解説

合成関数の微分より

y′ = 2

„

tan x +
1

tan x

«

·
„

tan x +
1

tan x

«′

となる。
„

tan x +
1

tan x

«′

は商の微分より

„

tan x +
1

tan x

«′

= (tan x)′ +

„

1

tan x

«′

=
1

cos2 x
+



− (tan x)′

tan2 x

ff

=
1

cos2 x
+

 

−
1

cos2 x

tan2 x

!

=
1

cos2 x
− 1

cos2 x tan2 x

=
1

cos2 x
− 1

cos2 x · sin2 x
cos2 x

=
1

cos2 x
− 1

sin2 x

となる。したがって

y′ = 2

„

tan x +
1

tan x

«

·
„

tan x +
1

tan x

«′

= 2

„

tan x +
1

tan x

«

·
„

1

cos2 x
− 1

sin2 x

«

= 2

 

sin x

cos x
+

1
sin x
cos x

!

·
„

1

cos2 x
− 1

sin2 x

«

= 2

„

sin x

cos x
+

cos x

sin x

«

·
„

1

cos2 x
− 1

sin2 x

«

となる。それぞれの括弧の中を通分して

y′ = 2

„

sin x

cos x
+

cos x

sin x

«

·
„

1

cos2 x
− 1

sin2 x

«

= 2
sin2 x + cos2 x

sin x cos x
· sin2 x − cos2 x

sin2 x cos2 x

= −2
sin2 x + cos2 x

sin x cos x
· cos2 x − sin2 x

sin2 x cos2 x

= −2

`

sin2 x + cos2 x
´ `

cos2 x − sin2 x
´

sin3 x cos3 x

= −2

`

sin2 x + cos2 x
´ `

cos2 x − sin2 x
´

(sin x cos x)3

となる。ここで，sin2 x + cos2 x = 1であり，また 2倍

角の公式より sin x cos x =
1

2
sin 2x，cos2 x− sin2 x =

cos 2xであるから

y′ = −2

`

sin2 x + cos2 x
´ `

cos2 x − sin2 x
´

(sin x cos x)3

= −2
1 · cos 2x
`

1
2

sin 2x
´3

= −2
cos 2x

1
8

sin3 2x

= −2
8 cos 2x

sin3 2x

= − 16 cos 2x

sin3 2x

となる。



別解

y =

„

tan x +
1

tan x

«2

=

 

sin x

cos x
+

1
sin x
cos x

!2

=

„

sin x

cos x
+

cos x

sin x

«2

=

„

sin2 x + cos2 x

sin x cos x

«2

=

„

1
1
2

sin 2x

«2

=

„

2

sin 2x

«2

=
4

sin2 2x

であるから，商の微分より

y′ = −4 ·
`

sin2 2x
´′

sin4 2x

となる。
`

sin2 2x
´′
は合成関数の微分より

`

sin2 2x
´′

= 2 sin 2x · (sin 2x)′

= 2 sin 2x · cos 2x · (2x)′

= 2 sin 2x · cos 2x · 2

なので

y′ = −4 · 2 sin 2x · cos 2x · 2
sin4 2x

より，分子分母を sin 2xで約分して

y′ = − 16 cos 2x

sin3 2x

となる。

（4）y =
cos x

1 − sin x

解答

y′ =
1

1 − sin x

解説

商の微分より

y′ =
(cos x)′ · (1 − sin x) − cos x · (1 − sin x)′

(1 − sin x)2

=
(− sin x) · (1 − sin x) − cos x · (− cos x)

(1 − sin x)2

=
− sin x + sin2 x + cos2 x

(1 − sin x)2

=
− sin x +

`

sin2 x + cos2 x
´

(1 − sin x)2

となる。ここで，sin2 x + cos2 x = 1より

y′ =
− sin x +

`

sin2 x + cos2 x
´

(1 − sin x)2

=
− sin x + 1

(1 − sin x)2

=
1 − sin x

(1 − sin x)2

となり，分子分母の 1 − sin xを約分して

y′ =
1 − sin x

(1 − sin x)2

=
1

1 − sin x

となる。

（5）y =
1 − sin x

1 + cos x

解答

y′ =
sin x − cos x − 1

(1 + cos x)2

解説

商の微分より

y′ =
(1 − sin x)′ · (1 + cos x) − (1 − sin x) · (1 + cos x)′

(1 + cos x)2

=
(− cos x) · (1 + cos x) − (1 − sin x) · (− sin x)

(1 + cos x)2

=
− cos x − cos2 x + sin x − sin2 x

(1 + cos x)2

=
sin x − cos x −

`

sin2 x + cos2 x
´

(1 + cos x)2

となる。ここで，sin2 x + cos2 x = 1より

y′ =
sin x − cos x −

`

sin2 x + cos2 x
´

(1 + cos x)2

=
sin x − cos x − 1

(1 + cos x)2

となる。

（6）y = sin(x + a) cos(x − a)

解答

y′ = cos 2x

解説

積の微分より

y′ = {sin(x + a)}′·cos(x−a)+sin(x+a)·{cos(x − a)}′

となる。ここで，{sin(x + a)}′ は合成関数の微分より

{sin(x + a)}′ = cos(x + a) · (x + a)′

となる。{sin(x + a)}′ も同様である。したがって

y′ = {sin(x + a)}′ · cos(x − a) + sin(x + a) · {cos(x − a)}′

= cos(x + a) · (x + a)′ · cos(x − a)

+ sin(x + a) ·
˘

− sin(x − a) · (x − a)′
¯

= cos(x + a) · 1 · cos(x − a)

+ sin(x + a) · {− sin(x − a) · 1}

= cos(x + a) cos(x − a) − sin(x + a) sin(x − a)

となる。すると加法定理から

cos α cos β − sin α sin β = cos (α + β)



が成り立つので，x + a = α，x − a = β と考えると

y′ = cos(x + a) cos(x − a) − sin(x + a) sin(x − a)

= cos {(x + a) + (x − a)}

= cos 2x

となる。

別解

積→和公式から

sin α cos β =
1

2
{sin (α + β) + sin (α − β)}

が成り立つので，x + a = α，x − a = β とすると

sin(x + a) cos(x − a)

=
1

2
[sin {(x + a) + (x − a)} + sin {(x + a) − (x − a)}]

より

sin(x + a) cos(x − a) =
1

2
(sin 2x + sin 2a)

が成り立つ。ゆえに，

y =
1

2
(sin 2x + sin 2a)

となるので，微分すると合成関数の微分より

y′ =
1

2

˘

cos 2x · (2x)′ + (sin 2a)′
¯

より

y′ =
1

2
(cos 2x · 2 + 0)

から

y′ = cos 2x

となる。

（7）y =
sin x

p

a2 cos2 x + b2 sin2 x

解答

y′ =
a2 cos x

“

p

a2 cos2 x + b2 sin2 x
”3

解説

商の微分より

y′ =
(sin x)′

p

a2 cos2 x + b2 sin2 x − sin x
“

p

a2 cos2 x + b2 sin2 x
”′

“

p

a2 cos2 x + b2 sin2 x
”2

となる。ここで，
“

p

a2 cos2 x + b2 sin2 x
”′
について合

成関数の微分より

“

p

a2 cos2 x + b2 sin2 x
”′

=



`

a2 cos2 x + b2 sin2 x
´

1
2

ff′

=
1

2

`

a2 cos2 x + b2 sin2 x
´− 1

2 ·
`

a2 cos2 x + b2 sin2 x
´′

=
1

2

1
p

a2 cos2 x + b2 sin2 x
·
`

a2 cos2 x + b2 sin2 x
´′

=

`

a2 cos2 x + b2 sin2 x
´′

2
p

a2 cos2 x + b2 sin2 x

=
a2 · 2 cos x · (cos x)′ + b2 · 2 sin x · (sin x)′

2
p

a2 cos2 x + b2 sin2 x

=
a2 · 2/ cos x · (− sin x) + b2 · 2/ sin x · cos x

2/
p

a2 cos2 x + b2 sin2 x

=
−a2 sin x cos x + b2 sin x cos x

p

a2 cos2 x + b2 sin2 x

=

`

b2 − a2
´

sin x cos x
p

a2 cos2 x + b2 sin2 x

となるので，

y′ =

cos x
p

a2 cos2 x + b2 sin2 x − sin x
(b2−a2) sin x cos x√
a2 cos2 x+b2 sin2 x

“

p

a2 cos2 x + b2 sin2 x
”2

となる。分子分母に
p

a2 cos2 x + b2 sin2 xをかけて

y′ =
cos x

“

p

a2 cos2 x + b2 sin2 x
”2

− sin x
˘`

b2 − a2
´

sin x cos x
¯

“

p

a2 cos2 x + b2 sin2 x
”3

となるので，分子を展開すると

y′ =
a2 cos3 x + b2 sin2 x cos x + a2 sin2 cos x − b2 sin2 x cos x

“

p

a2 cos2 x + b2 sin2 x
”3

より

y′ =
a2 cos3 x + b2 sin2 x cos x////////////////// + a2 sin2 cos x − b2 sin2 x cos x//////////////////

“

p

a2 cos2 x + b2 sin2 x
”3

となるので

y′ =
a2 cos3 x + a2 sin2 cos x
“

p

a2 cos2 x + b2 sin2 x
”3

となる。さらに分子を a2 cos xでくくると

y′ =
a2 cos x

`

cos2 x + sin2 x
´

“

p

a2 cos2 x + b2 sin2 x
”3

となる。sin2 x + cos2 x = 1より

y′ =
a2 cos x · 1

“

p

a2 cos2 x + b2 sin2 x
”3

から

y′ =
a2 cos x

“

p

a2 cos2 x + b2 sin2 x
”3

となる。



9 次の関数を微分せよ。ただし，aは定数で，a > 0，a 6= 1と

する。

（1）y = log(x2 + 2)

解答

y′ =
2x

x2 + 2

解説

0

B

@

log x
微分−−→ 1

x
↑

x2 + 2

1

C

A

y′ =
1

x2 + 2
· (x2 + 2)′

=
1

x2 + 2
· 2x

=
2x

x2 + 2

（2）y = log
1

3x + 1

解答

y′ = − 3

3x + 1

解説

0

B

B

@

log x
微分−−→ 1

x
↑

3x + 1

1

C

C

A

y = log
1

3x + 1
= log(3x + 1)−1 = − log(3x + 1) な

ので

y′ = − 1

3x + 1
· (3x + 1)′

= − 1

3x + 1
· 3

= − 3

3x + 1

（3）y = log |x2 − 4|
解答

y′ =
2x

x2 − 4

解説

0

B

B

@

log |x| 微分−−→ 1

x
↑

x2 − 4

1

C

C

A

y′ =
1

x2 − 4
· (x2 − 4)′

=
1

x2 − 4
· 2x

=
2x

x2 − 4

（4）y = log(sin2 x)

解答

y′ =
2

tan x

解説

0

B

B

@

log x
微分−−→ 1

x
↑

sin2 x

1

C

C

A

y′ =
1

sin2 x
· (sin2 x)′

=
1

sin2 x
· 2 sin x · (sin x)′

=
1

sin2 x
· 2 sin x · cos x

=
1

sin
2/
x

· 2sin x////// · cos x

=
2 cos x

sin x

ここで，分子分母を cos xで割ると

y′ =
2 cos x

sin x

=
2

sin x
cos x

=
2

tan x

となる。

別解

y = log(sin2 x) = 2 log | sin x|より，

y′ = 2
1

sin x
· (sin x)′

= 2
1

sin x
· cos x

=
2 cos x

sin x

=
2

sin x
cos x

=
2

tan x

注意

この別解について，sin x が負になるかもしれないので，

丸括弧ではなく，絶対値としてある。

（5）y = (log x)3

解答

y′ =
3 (log x)2

x

解説

0

B

@

x3 微分−−→ 3x2

↑
log x

1

C

A

y′ = 3 (log x)2 · (log x)′

= 3 (log x)2 · 1

x

=
3 (log x)2

x



（6）y = log4 2x

解答

y′ =
1

2x log 2

解説

0

B

B

@

log4 x
微分−−→ 1

x log 4
↑
2x

1

C

C

A

y′ =
1

2x log 4
· (2x)′

=
1

2x log 4
· 2

=
2

2x log 4

=
1

x log 4

=
1

x log 22

=
1

2x log 2

別解

y = log4 2x = log4 2 + log4 xより，微分して

y′ = (log4 2)′ +
1

x log 4

= 0 +
1

x log 4

=
1

x log 22

=
1

2x log 2

注意

この別解について，log4 2 は定数である（実際に値を求

めると
1

2
）。よって xに無関係であるから，微分すると

0になる。

（7）y = loga(x2 − 1)

解答

y′ =
2x

(x2 − 1) log a

解説

0

B

B

@

loga x
微分−−→ 1

x log a
↑

x2 − 1

1

C

C

A

y′ =
1

(x2 − 1) log a
· (x2 − 1)′

=
1

(x2 − 1) log a
· 2x

=
2x

(x2 − 1) log a

（8）y = (x log x − x)2

解答

y′ = 2x log x(log x − 1)

解説

0

B

@

x2 微分−−→ 2x

↑
x log x − x

1

C

A

y′ = 2(x log x − x) · (x log x − x)′

= 2(x log x − x) · {(x)′ · log x + x · (log x)′ − (x)′}

= 2(x log x − x) ·
„

1 · log x + x · 1

x
− 1

«

= 2(x log x − x) · (log x + 1 − 1)

= 2(x log x − x) · log x

= 2x(log x − 1) · log x

= 2x log x(log x − 1)

注意

x log xは xと log xの積なので，積の微分を用いる。

（9）y = e5x

解答

y′ = 5e5x

解説

0

B

@

ex 微分−−→ ex

↑
5x

1

C

A

y′ = e5x · (5x)′

= e5x · 5

= 5e5x

（10）y = (x + 3)e−x

解答

y′ = −(x + 2)e−x

解説

積の微分より

y′ = (x + 3)′ · e−x + (x + 3) · (e−x)′

= 1 · e−x + (x + 3) · e−x · (−x)′

= 1 · e−x + (x + 3) · e−x · (−1)

= e−x − (x + 3)e−x

= e−x{1 − (x + 3)}
= e−x(1 − x − 3)

= (−x − 2)e−x

= −(x + 2)e−x

注意

e−x の微分は合成関数の微分を用いる。
0

B

@

ex 微分−−→ ex

↑
−x

1

C

A

底が e である指数関数の微分は，すべてそのままになる

という勘違いをしている人が多いので気を付けよう。例

えば，(e−x)′ = −e−x となる。



（11）y = x3e2x

解答

y′ = x2(2x + 3)e2x

解説

積の微分より

y′ = (x3)′ · e2x + x3 · (e2x)′

= 3x2 · e2x + x3 · e2x · (2x)′

= 3x2 · e2x + x3 · e2x · 2
= 3x2e2x + 2x3e2x

= x2e2x(3 + 2x)

= x2(2x + 3)e2x

（12）y = e−x cos x

解答

y′ = −e−x(sin x + cos x)

解説

積の微分より

y′ = (e−x)′ · cos x + e−x · (cos x)′

= e−x · (−x)′ · cos x + e−x · (− sin x)

= e−x · (−1) · cos x + e−x · (− sin x)

= −e−x cos x − e−x sin x

= −e−x(cos x + sin x)

= −e−x(sin x + cos x)

（13）y = ex tan x

解答

y′ = ex

„

tan x +
1

cos2 x

«

解説

積の微分より

y′ = (ex)′ · tan x + ex · (tan x)′

= ex · tan x + ex · 1

cos2 x

= ex

„

tan x +
1

cos2 x

«

参考

tan2 x + 1 =
1

cos2 x
なので，この公式を用いて

y′ = ex(tan2 x + tan x + 1)

としてもよい。

（14）y = e3x2−x

解答

y′ = (6x − 1)e3x2−x

解説

0

B

@

ex 微分−−→ ex

↑
3x2 − x

1

C

A

y′ = e3x2−x · (3x2 − x)′

= e3x2−x · (6x − 1)

= (6x − 1)e3x2−x

（15）y = a−4x

解答

y′ = −4a−4x log a

解説

0

B

@

ax 微分−−→ ax log a

↑
−4x

1

C

A

y′ = a−4x log a · (−4x)′

= a−4x log a · (−4)

= −4a−4x log a

10 次の関数を微分せよ。ただし，aは定数で，a > 0，a 6= 1と

する。

（1）y = e−3x sin 3x

解答

y′ = −3e−3x (sin 3x − cos 3x)

解説

積の微分と合成関数の微分より

y′ =
`

e−3x´′ · sin 3x + e−3x · (sin 3x)′

= e−3x · (−3x)′ · sin 3x + e−3x · cos 3x · (3x)′

= e−3x · (−3) · sin 3x + e−3x · cos 3x · 3
= −3e−3x sin 3x + 3e−3x cos 3x

= −3e−3x (sin 3x − cos 3x)

参考

増減表を書かなければならないときは，

y′ = −3e−3x (sin 3x − cos 3x)

において，sin 3x − cos 3xを合成して sin 3x − cos 3x =√
2 sin

“

3x − π

4

”

とする。つまり，

y′ = −3
√

2e−3x sin
“

3x − π

4

”

まで変形する。

（2）y = ecos x

解答

y′ = −ecos x sin x

解説

0

@

ex 微分−−→ ex

↑
cos x

1

A

合成関数の微分より

y′ = ecos x · (cos x)′

= ecos x · (− sin x)
= −ecos x sin x

注意

− sin xecos x と書くと，x と ecos x がかけてあるよう

に見えてしまう (つまり，− sin (xecos x) と勘違いさ

れる)。よって，答えのように −ecos x sin x と書くか，

− (sin x) ecos x と書く。同じ理由で，log 2などもよく括

弧をつける。



（3）y = 2sin x

解答

y′ = (log 2)2sin x cos x

解説

0

@

2x 微分−−→ 2x log 2
↑

sin x

1

A

合成関数の微分より

y′ = 2sin x log 2 · (sin x)′

= 2sin x log 2 · cos x

= (log 2)2sin x cos x

（4）y = logx a

解答

y′ = − log a

x(log x)2

解説

底の交換公式より y = logx a =
log a

log x
= log a · 1

log x
となる。ここで log aは定数である。よって，商の微分公

式


1

g(x)

ff′

= − g′(x)

{g(x)}2 より

y′ = log a ·
„

1

log x

«′

= log a ·


− (log x)′

(log x)2

ff

= log a ·


−
1
x

(log x)2

ff

= log a ·


− 1

x(log x)2

ff

= − log a

x(log x)2

（5）y = loga sin x

解答

y′ =
1

(tan x) log a

解説

0

B

B

@

loga x
微分−−→ 1

x log a
↑

sin x

1

C

C

A

合成関数の微分より

y′ =
1

(sin x) log a
· (sin x)′

=
1

(sin x) log a
· cos x

=
cos x

(sin x) log a

分子，分母を cos xで割って

y′ =
cos x

(sin x) log a

=
1

sin x
cos x

· log a

=
1

(tan x) log a

となる。

（6）y = log{ex(1 − x)}
解答

y′ =
x

x − 1

解説

0

B

B

@

log x
微分−−→ 1

x
↑

ex(1 − x)

1

C

C

A

合成関数の微分より

y′ =
1

ex(1 − x)
· {ex(1 − x)}′

となる。さらに，積の微分より

y′ =
1

ex(1 − x)
· {ex(1 − x)}′

=
1

ex(1 − x)
·
˘

(ex)′ (1 − x) + ex(1 − x)′
¯

=
1

ex(1 − x)
· {ex(1 − x) + ex(−1)}

=
1

ex(1 − x)
· (ex − xex − ex)

=
1

ex(1 − x)
· (−xex)

=
1

ex///(1 − x)
·
“

−xex///
”

=
1

1 − x
· (−x)

=
−x

1 − x

=
x

x − 1

となる。

別解

y = log{ex(1 − x)}について

y = log{ex(1 − x)}

= log ex + log |1 − x|

= x log e + log |1 − x|

= x · 1 + log |1 − x|

= x + log |1 − x|

と変形して微分する。log |1 − x|の微分は合成関数の微
分より

y′ = (x)′ + (log |1 − x|)′

= 1 +
1

1 − x
· (1 − x)′

= 1 +
1

1 − x
· (−1)

= 1 +
1

x − 1

となり，通分すると

y′ = 1 +
1

x − 1

=
(x − 1) + 1

x − 1

=
x

x − 1



となる。

（7）y = 3
√

x + 1 log x

解答

y′ =
x log x + 3x + 3

3x 3
p

(x + 1)2

解説 積の微分より

y′ =
` 3
√

x + 1
´′

log x + 3
√

x + 1 (log x)′

=
n

(x + 1)
1
3

o′
log x + 3

√
x + 1 (log x)′

となる。したがって，合成関数の微分より

y′ =
n

(x + 1)
1
3

o′
log x + 3

√
x + 1 (log x)′

=
1

3
(x + 1)−

2
3 · (x + 1)′ · log x + 3

√
x + 1 · 1

x

=
1

3
(x + 1)−

2
3 · 1 · log x + 3

√
x + 1 · 1

x

=
1

3
· 1

(x + 1)
2
3

· log x + 3
√

x + 1 · 1

x

=
1

3
· 1

3
p

(x + 1)2
· log x + 3

√
x + 1 · 1

x

となる。通分すると 3
p

(x + 1)3 は x + 1になるので

y′ =
1

3
· 1

3
p

(x + 1)2
· log x + 3

√
x + 1 · 1

x

=
log x

3 3
p

(x + 1)2
+

3
√

x + 1

x

=
(log x) × x

“

3 3
p

(x + 1)2
”

× x
+

3
√

x + 1 × 3 3
p

(x + 1)2

x × 3 3
p

(x + 1)2

=
x log x

3x 3
p

(x + 1)2
+

3 3
p

(x + 1)3

3x 3
p

(x + 1)2

=
x log x

3x 3
p

(x + 1)2
+

3(x + 1)

3x 3
p

(x + 1)2

=
x log x + 3(x + 1)

3x 3
p

(x + 1)2

=
x log x + 3x + 3

3x 3
p

(x + 1)2

（8）y = loga

“

x +
p

x2 − a2
”

解答

y′ =
1√

x2 − a2 log a

解説

0

B

B

@

loga x
微分−−→ 1

x log a
↑

x +
p

x2 − a2

1

C

C

A

y′ =
1

`

x +
√

x2 − a2
´

log a
·
“

x +
p

x2 − a2
”′

=
1

`

x +
√

x2 − a2
´

log a
·


x +
`

x2 − a2´
1
2

ff′

=
1

`

x +
√

x2 − a2
´

log a
·


1 +
1

2
(x2 − a2)−

1
2 · (x2 − a2)′

ff

=
1

`

x +
√

x2 − a2
´

log a
·


1 +
1

2
(x2 − a2)−

1
2 · 2x

ff

=
1

`

x +
√

x2 − a2
´

log a
·
n

1 + (x2 − a2)−
1
2 · x

o

=
1

`

x +
√

x2 − a2
´

log a
·
„

1 +
1√

x2 − a2
· x
«

=
1

`

x +
√

x2 − a2
´

log a
·
„

1 +
x√

x2 − a2

«

となる。ここで，括弧内を通分すると

y′ =
1

`

x +
√

x2 − a2
´

log a
·
√

x2 − a2 + x√
x2 − a2

となり，約分ができる。

y′ =
1

`

x +
√

x2 − a2
´

////////////////////// log a
·

√
x2 − a2 + x///////////////////
√

x2 − a2

つまり

y′ =
1√

x2 − a2 log a

となる。

参考

この設問は非常に有名な問題であるので，計算過程も含

めて覚えておくとよい。

11 次の関数を微分せよ。ただし，a, bは正の定数とする。

（1）y =
˘

log
`

1 +
√

x
´¯2

解答

y′ =
log (1 +

√
x)

x +
√

x

解説

y′ = 2 log
`

1 +
√

x
´

·
˘

log
`

1 +
√

x
´¯′

= 2 log
`

1 +
√

x
´

· 1

1 +
√

x
· (1 +

√
x)′

= 2 log
`

1 +
√

x
´

· 1

1 +
√

x
·
„

0 +
1

2
x− 1

2

«

= 2 log
`

1 +
√

x
´

· 1

1 +
√

x
· 1

2

1√
x

=
log (1 +

√
x)√

x (1 +
√

x)

=
log (1 +

√
x)√

x + x

=
log (1 +

√
x)

x +
√

x

（2）y = log
x2 − b

x2 + b

解答

y′ =
4bx

(x2 − b)(x2 + b)



解説

y = log
x2 − b

x2 + b
= log |x2 − b| − log |x2 + b| であるか

ら，合成関数の微分より

y′ =
`

log |x2 − b|
´′ −

`

log |x2 + b|
´′

=
1

x2 − b
· (x2 − b)′ − 1

x2 + b
· (x2 + b)′

=
1

x2 − b
· 2x − 1

x2 + b
· 2x

となる。ゆえに通分して

y′ =
1

x2 − b
· 2x − 1

x2 − b
· 2x

= 2x

„

1

x2 − b
− 1

x2 + b

«

= 2x · (x2 + b) − (x2 − b)

(x2 − b)(x2 + b)

= 2x · x2 + b − x2 + b

(x2 − b)(x2 + b)

= 2x · 2b

(x2 − b)(x2 + b)

=
4bx

(x2 − b)(x2 + b)

となる。

参考

問題文より bは正の数となるので，x2 + bは xがいくつ

であっても計算結果は正の数となる。ゆえに，log |x2 +b|
と絶対値を使わずに log(x2 + b) と丸括弧を用いてもよ

い。

別解

0

B

B

B

@

log x
微分−−→ 1

x
↑

x2 − b

x2 + b

1

C

C

C

A

y = log
x2 − b

x2 + b
を合成関数と考えて，合成関数の微分

をすると

y′ =
1

x2−b
x2+b

·
„

x2 − b

x2 + b

«′

となる。商の微分より

y′ =
1

x2−b
x2+b

·
„

x2 − b

x2 + b

«′

=
1

x2−b
x2+b

· (x2 − b)′(x2 + b) − (x2 − b)(x2 + b)′

(x2 + b)2

=
1

x2−b
x2+b

· 2x · (x2 + b) − (x2 − b) · 2x

(x2 + b)2

=
x2 + b

x2 − b
· 2x3 + 2bx − 2x3 + 2bx

(x2 + b)2

=
x2 + b////////

x2 − b
· 4bx

(x2 + b)
2/1

=
4bx

(x2 − b)(x2 + b)

となる。

（3）y = x
p

1 + x2 + log
“

x +
p

1 + x2
”

解答

y′ = 2
p

1 + x2

解説

x
√

1 + x2 は積の微分，log
`

x +
√

1 + x2
´

は合成関数の

微分を行う。
“

p

1 + x2
”′
について

(x)′ ·
p

1 + x2 + x ·
“

p

1 + x2
”′

= 1 ·
p

1 + x2 + x · 1

2
(1 + x2)−

1
2 · (1 + x2)′

= 1 ·
p

1 + x2 + x · 1

2
(1 + x2)−

1
2 · 2x

=
p

1 + x2 + x · (1 + x2)−
1
2 · x

=
p

1 + x2 + x · 1√
1 + x2

· x

=
p

1 + x2 +
x2

√
1 + x2

ゆえに

“

p

1 + x2
”′

=
p

1 + x2 +
x2

√
1 + x2

(13)

となる。

一方，
n

log
“

x +
p

1 + x2
”o′

について

0

B

B

@

log x
微分−−→ 1

x
↑

x +
p

1 + x2

1

C

C

A

1

x +
√

1 + x2
·
“

x +
p

1 + x2
”′

=
1

x +
√

1 + x2
·


1 +
1

2
(1 + x2)−

1
2 · (1 + x2)′

ff

=
1

x +
√

1 + x2
·
„

1 +
1

2
(1 + x2)−

1
2 · 2x

«

=
1

x +
√

1 + x2
·
“

1 + (1 + x2)−
1
2 · x

”

=
1

x +
√

1 + x2
·
„

1 +
1√

1 + x2
· x
«

=
1

x +
√

1 + x2
·
„

1 +
x√

1 + x2

«

となる。ここで，括弧内を通分すると

1

x +
√

1 + x2
·
√

1 + x2 + x√
1 + x2

となり，約分ができる。

1

x +
√

1 + x2/////////////////
·

√
1 + x2 + x/////////////////
√

1 + x2

つまり

n

log
“

x +
p

1 + x2
”o′

=
1√

1 + x2
(14)

となる。

以上，第 (13)式と第 (14)式より，

y′ =

„

p

1 + x2 +
x2

√
1 + x2

«

+
1√

1 + x2

となる。ここで，また通分すると

y′ =
p

1 + x2 +
x2 + 1√
1 + x2



となり，x2 + 1 =
“

p

1 + x2
”2

であることに注意すると

y′ =
p

1 + x2 +

`√
1 + x2

´2

√
1 + x2

より，約分して

y′ =
p

1 + x2 +

√
1 + x2

1

となる。したがって

y′ = 2
p

1 + x2

となる。

参考

第 (14)式は非常に有名な問題であるので，計算過程も含

めて覚えておくとよい。また，この設問そのものも入試

問題では有名であり，この結果はよく積分として出題さ

れる。つまり
Z

p

1 + x2dx =
1

2

n

x
p

1 + x2 + log
“

x +
p

1 + x2
”o

+C

である。

（4）y =
“ a

b

”x

+

„

b

x

«a

+
“ x

a

”b

解答

y′ =
“ a

b

”x

log
a

b
− aba

xa+1
+

bxb−1

ab

解説
“ a

b

”x

は指数関数，
„

b

x

«a

は分数関数，
“ x

a

”b

は多

項式だと思って，それぞれ微分する。

y′ =
n“ a

b

”xo′
+

„

b

x

«aff′

+



“ x

a

”b
ff′

=
“ a

b

”x

log
a

b
+
`

ba · x−a´′ +

„

1

ab
· xb

«′

=
“ a

b

”x

log
a

b
+ ba · (−a)x−a−1 +

1

ab
· bxb−1

=
“ a

b

”x

log
a

b
− aba · x−(a+1) +

b

ab
· xb−1

=
“ a

b

”x

log
a

b
− aba · 1

xa+1
+

b

ab
· xb−1

=
“ a

b

”x

log
a

b
− aba

xa+1
+

bxb−1

ab

（5）y =
ex + e−x

ex − e−x

解答

y′ = − 4

(ex − e−x)2

解説

商の微分を用いる。ここで，e−x を微分すると合成関数

の微分より
`

e−x´′ = e−x · (−x)′ = e−x · (−1) = −e−x

となることに注意する。すると

y′ =

`

ex + e−x
´′ `

ex − e−x
´

−
`

ex + e−x
´ `

ex − e−x
´′

(ex − e−x)2

=

˘

ex +
`

−e−x
´¯ `

ex − e−x
´

−
`

ex + e−x
´ ˘

ex −
`

−e−x
´¯

(ex − e−x)2

=

`

ex − e−x
´ `

ex − e−x
´

−
`

ex + e−x
´ `

ex + e−x
´

(ex − e−x)2

=

`

ex − e−x
´2 −

`

ex + e−x
´2

(ex − e−x)2

分子を展開して

y′ =

`

ex − e−x
´2 −

`

ex + e−x
´2

(ex − e−x)2

=

n

(ex)2 − 2exe−x +
`

e−x
´2
o

−
n

(ex)2 + 2exe−x +
`

e−x
´2
o

(ex − e−x)2

=

`

e2x − 2ex−x + e−2x
´

−
`

e2x + 2ex−x + e−2x
´

(ex − e−x)2

=

`

e2x − 2e0 + e−2x
´

−
`

e2x + 2e0 + e−2x
´

(ex − e−x)2

=

`

e2x − 2 · 1 + e−2x
´

−
`

e2x + 2 · 1 + e−2x
´

(ex − e−x)2

=
e2x − 2 + e−2x − e2x − 2 − e−2x

(ex − e−x)2

=
−4

(ex − e−x)2

= − 4

(ex − e−x)2

となる。

（6）y = log

„

1 + sin x

1 − sin x

«

解答

y′ =
2

cos x

解説

y = log

„

1 + sin x

1 − sin x

«

= log |1+ sin x| − log |1− sin x|

であるから，合成関数の微分より

y′ = (log |1 + sin x|)′ − (log |1 − sin x|)′

=
1

1 + sin x
· (1 + sin x)′ − 1

1 − sin x
· (1 − sin x)′

=
1

1 + sin x
· cos x − 1

1 − sin x
· (− cos x)

=
1

1 + sin x
· cos x +

1

1 − sin x
· cos x

となる。ゆえに通分して

y′ =
1

1 + sin x
· cos x +

1

1 − sin x
· cos x

= cos x

„

1

1 + sin x
+

1

1 − sin x

«

= cos x · (1 − sin x) + (1 + sin x)

(1 + sin x)(1 − sin x)

= cos x · 1 − sin x + 1 + sin x

(1 + sin x)(1 − sin x)

= cos x · 2

(1 + sin x)(1 − sin x)

=
2 cos x

(1 + sin x)(1 − sin x)

となる。ここで sin2 x + cos2 x = 1 の公式から，分母

(1 + sin x)(1 − sin x)は

(1 + sin x)(1 − sin x) = 12 − sin2 x = cos2 x

となるので，約分できる。つまり

y′ =
2 cos x

(1 + sin x)(1 − sin x)

=
2 cos x

cos2 x

=
2

cos x



となる。

別解

0

B

B

B

@

log x
微分−−→ 1

x
↑

1 + sin x

1 − sin x

1

C

C

C

A

y = log

„

1 + sin x

1 − sin x

«

を合成関数と考えて，合成関数の

微分をすると

y′ =
1

1+sin x
1−sin x

·
„

1 + sin x

1 − sin x

«′

となる。商の微分より

y′ =
1

1+sin x
1−sin x

·
„

1 + sin x

1 − sin x

«′

=
1

1+sin x
1−sin x

· (1 + sin x)′(1 − sin x) − (1 + sin x)(1 − sin x)′

(1 − sin x)2

=
1

1+sin x
1−sin x

· cos x(1 − sin x) − (1 + sin x)(− cos x)

(1 − sin x)2

=
1 − sin x

1 + sin x
· cos x − cos x sin x + cos x + sin x cos x

(1 − sin x)2

=
1 − sin x////////////

1 + sin x
· 2 cos x

(1 − sin x)
2/1

=
2 cos x

(1 + sin x)(1 − sin x)

となる。(以下同じ)

12 次の関数を微分せよ。

（1）y = (x + 2)2(x + 3)3(x + 4)4

解答

y′ = (x + 2)(x + 3)2(x + 4)3(9x2 + 52x + 72)

解説

両辺の絶対値をとると

|y| =
˛

˛(x + 2)2(x + 3)3(x + 4)4
˛

˛

=
˛

˛(x + 2)2
˛

˛

˛

˛(x + 3)3
˛

˛

˛

˛(x + 4)4
˛

˛

= |x + 2|2 |x + 3|3 |x + 4|4

となる。さらに，両辺の自然対数をとると

log |y| = log |x + 2|2 |x + 3|3 |x + 4|4

= log |x + 2|2 + log |x + 3|3 + log |x + 4|4
= 2 log |x + 2| + 3 log |x + 3| + 4 log |x + 4|

より

log |y| = 2 log |x + 2|+ 3 log |x + 3|+ 4 log |x + 4|

となる。上式の両辺を xで微分すると左辺は

1

y
· y′

となる。また右辺は，合成関数の微分より

2 · 1

x + 2
· (x + 2)′ + 3 · 1

x + 3
· (x + 3)′ + 4 · 1

x + 4
· (x + 4)′

= 2 · 1

x + 2
· 1 + 3 · 1

x + 3
· 1 + 4 · 1

x + 4
· 1

=
2

x + 2
+

3

x + 3
+

4

x + 4

となり，さらに通分すると

2

x + 2
+

3

x + 3
+

4

x + 4

=
2(x + 3)(x + 4) + 3(x + 2)(x + 4) + 4(x + 2)(x + 3)

(x + 2)(x + 3)(x + 4)

=
2(x2 + 7x + 12) + 3(x2 + 6x + 8) + 4(x2 + 5x + 6)

(x + 2)(x + 3)(x + 4)

=
9x2 + 52x + 72

(x + 2)(x + 3)(x + 4)

となる。つまり

1

y
· y′ =

9x2 + 52x + 72

(x + 2)(x + 3)(x + 4)

となる。さらに両辺に y をかけて

y′ = y · 9x2 + 52x + 72

(x + 2)(x + 3)(x + 4)

となる。ここで，y = (x + 2)2(x + 3)3(x + 4)4 より

y′ = (x+2)2(x+3)3(x+4)4 · 9x2 + 52x + 72

(x + 2)(x + 3)(x + 4)

となるので，約分して

y′ = (x+2)
2/1

(x+3)
3/2

(x+4)
4/3 · 9x2 + 52x + 72

(x + 2)(x + 3)(x + 4)//////////////////////////////

より

y′ = (x + 2)(x + 3)2(x + 4)3(9x2 + 52x + 72)

となる。

（2）y =
(x + 1)2

(x + 2)2(x − 3)4

解答

y′ = − 2(x + 1)(2x2 + 5x + 7)

(x + 2)3(x − 3)5

解説

両辺の絶対値をとると

|y| =

˛

˛

˛

˛

(x + 1)2

(x + 2)2(x − 3)4

˛

˛

˛

˛

=

˛

˛(x + 1)2
˛

˛

|(x + 2)2| |(x − 3)4|

=
|x + 1|2

|x + 2|2 |x − 3|4

となる。さらに，両辺の自然対数をとると

log |y| = log
|x + 1|2

|x + 2|2 |x − 3|4

= log |x + 1|2 − log |x + 2|2 − log |x − 3|4

= 2 log |x + 1| − 2 log |x + 2| − 4 log |x − 3|

より

log |y| = 2 log |x + 1| − 2 log |x + 2| − 4 log |x − 3|

となる。上式の両辺を xで微分すると左辺は

1

y
· y′



となる。また右辺は，合成関数の微分より

2 · 1

x + 1
· (x + 1)′ − 2 · 1

x + 2
· (x + 2)′ − 4 · 1

x − 3
· (x − 3)′

= 2 · 1

x + 1
· 1 − 2 · 1

x + 2
· 1 − 4 · 1

x − 3
· 1

=
2

x + 1
− 2

x + 2
− 4

x − 3

となり，さらに通分すると

2

x + 1
− 2

x + 2
− 4

x − 3

=
2(x + 2)(x − 3) − 2(x + 1)(x − 3) − 4(x + 1)(x + 2)

(x + 1)(x + 2)(x − 3)

=
2(x2 − x − 6) − 2(x2 − 2x − 3) − 4(x2 + 3x + 2)

(x + 1)(x + 2)(x − 3)

=
−4x2 − 10x − 14

(x + 1)(x + 2)(x − 3)

=
−2(2x2 + 5x + 7)

(x + 1)(x + 2)(x − 3)

となる。つまり

1

y
· y′ =

−2(2x2 + 5x + 7)

(x + 1)(x + 2)(x − 3)

となる。さらに両辺に y をかけて

y′ = −2y · 2x2 + 5x + 7

(x + 1)(x + 2)(x − 3)

となる。ここで，y =
(x + 1)2

(x + 2)2(x − 3)4
より

y′ = −2 · (x + 1)2

(x + 2)2(x − 3)4
· 2x2 + 5x + 7

(x + 1)(x + 2)(x − 3)

となるので，約分して

y′ = −2 · (x + 1)
2/1

(x + 2)2(x − 3)4
· 2x2 + 5x + 7

(x + 1)//////////(x + 2)(x − 3)

より

y′ = − 2(x + 1)(2x2 + 5x + 7)

(x + 2)3(x − 3)5

となる。

（3）y =
(1 + x)3(1 − 2x)

(1 − x)(1 + 2x)3

解答

y′ = − 2(1 + x)2(4x2 − 3x + 2)

(1 − x)2(1 + 2x)4

解説

両辺の絶対値をとると

|y| =

˛

˛

˛

˛

(1 + x)3(1 − 2x)

(1 − x)(1 + 2x)3

˛

˛

˛

˛

=
|1 + x|3 |1 − 2x|
|1 − x| |1 + 2x|3

となる。さらに，両辺の自然対数をとると，右辺は

log
|1 + x|3 |1 − 2x|
|1 − x| |1 + 2x|3

= log |1 + x|3 + log |1 − 2x| − log |1 − x| − log |1 + 2x|3

= 3 log |1 + x| + log |1 − 2x| − log |1 − x| − 3 log |1 + 2x|

より

log |y| = 3 log |1 + x|+log |1 − 2x|−log |1 − x|−3 log |1 + 2x|

となる。上式の両辺を xで微分すると左辺は

1

y
· y′

となる。また右辺は，合成関数の微分より

3 · 1

1 + x
· (1 + x)′ +

1

1 − 2x
· (1 − 2x)′

− 1

1 − x
· (1 − x)′ − 3 · 1

1 + 2x
· (1 + 2x)′

= 3 · 1

1 + x
· 1 +

1

1 − 2x
· (−2)

− 1

1 − x
· (−1) − 3 · 1

1 + 2x
· 2

=
3

1 + x
− 2

1 − 2x
+

1

1 − x
− 6

1 + 2x

となり，さらに通分するが，ここで足す順番を工夫する。

つまり

3

1 + x
− 2

1 − 2x
+

1

1 − x
− 6

1 + 2x

=
3

1 + x
+

1

1 − x
− 2

1 − 2x
− 6

1 + 2x

=

„

3

1 + x
+

1

1 − x

«

−
„

2

1 − 2x
+

6

1 + 2x

«

=
3(1 − x) + (1 + x)

(1 + x)(1 − x)
− 2(1 + 2x) + 6(1 − 2x)

(1 − 2x)(1 + 2x)

=
4 − 2x

(1 + x)(1 − x)
− 8 − 8x

(1 − 2x)(1 + 2x)

=
4 − 2x

1 − x2
− 8 − 8x

1 − 4x2

=
(4 − 2x)(1 − 4x2) − (8 − 8x)(1 − x2)

(1 − x2)(1 − 4x2)

=
(8x3 − 16x2 − 2x + 4) − (8x3 − 8x2 − 8x + 8)

(1 − x2)(1 − 4x2)

=
−8x2 + 6x − 4

(1 − x2)(1 − 4x2)

=
−2(4x2 − 3x + 2)

(1 + x)(1 − x)(1 − 2x)(1 + 2x)

となる。つまり

1

y
· y′ =

−2(4x2 − 3x + 2)

(1 + x)(1 − x)(1 − 2x)(1 + 2x)

となる。さらに両辺に y をかけて

y′ = −2y · 4x2 − 3x + 2

(1 + x)(1 − x)(1 − 2x)(1 + 2x)

となる。ここで，y =
(1 + x)3(1 − 2x)

(1 − x)(1 + 2x)3
より

y′ = −2· (1 + x)3(1 − 2x)

(1 − x)(1 + 2x)3
· 4x2 − 3x + 2

(1 + x)(1 − x)(1 − 2x)(1 + 2x)

となるので，約分して

y′ = −2·
(1 + x)

3/2
(1 − 2x)///////////

(1 − x)(1 + 2x)3
· 4x2 − 3x + 2

(1 + x)//////////(1 − x)(1 − 2x)///////////(1 + 2x)

より

y′ = − 2(1 + x)2(4x2 − 3x + 2)

(1 − x)2(1 + 2x)4

となる。



（4）y = 3
p

(x + 2)(x2 + 2)

解答

y′ =
3x2 + 4x + 2

3 3
p

(x + 2)2(x2 + 2)2

解説

両辺の絶対値をとると

|y| =
˛

˛

˛

3
p

(x + 2)(x2 + 2)
˛

˛

˛

= 3
p

|x + 2| |x2 + 2|

となる。さらに，両辺の自然対数をとると，左辺は

log 3
p

|x + 2| |x2 + 2|

= log
˘

|x + 2|
˛

˛x2 + 2
˛

˛

¯

1
3

=
1

3
log |x + 2|

˛

˛x2 + 2
˛

˛

=
1

3

˘

log |x + 2| + log
˛

˛x2 + 2
˛

˛

¯

=
1

3
log |x + 2| + 1

3
log
˛

˛x2 + 2
˛

˛

より

log |y| =
1

3
log |x + 2| + 1

3
log
˛

˛x2 + 2
˛

˛

となる。上式の両辺を xで微分すると左辺は

1

y
· y′

となる。また右辺は，合成関数の微分より

1

3
· 1

x + 2
· (x + 2)′ +

1

3
· 1

x2 + 2
· (x2 + 2)′

=
1

3
· 1

x + 2
· 1 +

1

3
· 1

x2 + 2
· 2x

=
1

3
· 1

x + 2
+

1

3
· 2x

x2 + 2

となり，さらに通分すると

　
1

3
· 1

x + 2
+

1

3
· 2x

x2 + 2

= 　
1

3

„

1

x + 2
+

2x

x2 + 2

«

= 　
1

3
· (x2 + 2) + 2x(x + 2)

(x + 2)(x2 + 2)

= 　
1

3
· 3x2 + 4x + 2

(x + 2)(x2 + 2)

= 　
3x2 + 4x + 2

3(x + 2)(x2 + 2)

となる。つまり

1

y
· y′ =

3x2 + 4x + 2

3(x + 2)(x2 + 2)

となる。さらに両辺に y をかけて

y′ = y · 3x2 + 4x + 2

3(x + 2)(x2 + 2)

となる。ここで，y = 3
p

(x + 2)(x2 + 2)より

y′ = 3
p

(x + 2)(x2 + 2) · 3x2 + 4x + 2

3(x + 2)(x2 + 2)

となるので，約分する。ここで，分母の x + 2 を
` 3
√

x + 2
´3
と考える。つまり， 3

√
x + 2 を 3 個かけて

x + 2になったと考える。すると，分子には 3
√

x + 2が 1

個があり，分母には 3 個あるので，約分されて分母に 2

個残る。 3
√

x2 + 2も同様である。したがって

y′ = 3
p

(x + 2)(x2 + 2) · 3x2 + 4x + 2

3 3
p

(x + 2)3(x2 + 2)3

と考えて約分すると

y′ = 3

r

(x + 2)//////////(x
2 + 2)/////////// · 3x2 + 4x + 2

3
3
q

(x + 2)
3/2

(x2 + 2)
3/2

より

y′ =
3x2 + 4x + 2

3 3
p

(x + 2)2(x2 + 2)2

となる。

参考

log
˛

˛x2 + 2
˛

˛ について，x がいくつであっても x2 + 2 は

必ず正の数となるので，log
`

x2 + 2
´

としてもよい。

（5）y =
x

p

(a2 + x2)3

解答

y′ =
a2 − 2x2

p

(a2 + x2)5

解説

両辺の絶対値をとると

|y| =

˛

˛

˛

˛

˛

x
p

(a2 + x2)3

˛

˛

˛

˛

˛

=
|x|

q

|a2 + x2|3

となる。さらに，両辺の自然対数をとると，右辺は

log
|x|

q

|a2 + x2|3

= log |x| − log

q

|a2 + x2|3

= log |x| − log
˛

˛a2 + x2
˛

˛

3
2

= log |x| − 3

2
log
˛

˛a2 + x2
˛

˛

より

log |y| = log |x| − 3

2
log
˛

˛a2 + x2
˛

˛

となる。上式の両辺を xで微分すると左辺は

1

y
· y′

となる。また右辺は，合成関数の微分より

1

x
− 3

2
· 1

a2 + x2
· (a2 + x2)′

=
1

x
− 3

2
· 1

a2 + x2
· 2x

=
1

x
− 3x

a2 + x2



となり，さらに通分すると

　
1

x
− 3x

a2 + x2

=

`

a2 + x2
´

− 3x · x
x (a2 + x2)

=
a2 + x2 − 3x2

x (a2 + x2)

=
a2 − 2x2

x (a2 + x2)

となる。つまり

1

y
· y′ =

a2 − 2x2

x (a2 + x2)

となる。さらに両辺に y をかけて

y′ = y · a2 − 2x2

x (a2 + x2)

となる。ここで，y =
x

p

(a2 + x2)3
より

y′ =
x

p

(a2 + x2)3
· a2 − 2x2

x (a2 + x2)

となるので，約分する。ここで，分母の a2 + x2 を
p

(a2 + x2)2 と考える。したがって

y′ =
x

p

(a2 + x2)3
· a2 − 2x2

x
p

(a2 + x2)2

と考えて約分すると

y′ =
x/

p

(a2 + x2)3
· a2 − 2x2

x/
p

(a2 + x2)2

より

y′ =
a2 − 2x2

p

(a2 + x2)5

となる。

（6）y = 3

s

(x + 2)4

x2(x2 + 1)

解答

y′ = − 2(4x2 − x + 2)

3x(x2 + 1)
3

s

(x + 2)

x2(x2 + 1)

解説

両辺の絶対値をとると

|y| =

˛

˛

˛

˛

˛

3

s

(x + 2)4

x2(x2 + 1)

˛

˛

˛

˛

˛

= 3

s

|x + 2|4

|x|2 |x2 + 1|

となる。さらに，両辺の自然対数をとると，右辺は

log 3

s

|x + 2|4

|x|2 |x2 + 1|

= log



|x + 2|4

|x|2 |x2 + 1|

ff

1
3

=
1

3
log

|x + 2|4

|x|2 |x2 + 1|

=
1

3

˘

log |x + 2|4 − log |x|2 − log
˛

˛x2 + 1
˛

˛

¯

=
1

3

˘

4 log |x + 2| − 2 log |x| − log
˛

˛x2 + 1
˛

˛

¯

=
4

3
log |x + 2| − 2

3
log |x| − 1

3
log
˛

˛x2 + 1
˛

˛

より

log |y| =
4

3
log |x + 2|− 2

3
log |x|− 1

3
log
˛

˛x2 + 1
˛

˛

となる。上式の両辺を xで微分すると左辺は

1

y
· y′

となる。また右辺は，合成関数の微分より

4

3
· 1

x + 2
· (x + 2)′ − 2

3
· 1

x
− 1

3
· 1

x2 + 1
· (x2 + 1)′

=
4

3
· 1

x + 2
· 1 − 2

3
· 1

x
− 1

3
· 1

x2 + 1
· 2x

=
4

3
· 1

x + 2
− 2

3
· 1

x
− 2

3
· x

x2 + 1

=
2

3

„

2

x + 2
− 1

x
− x

x2 + 1

«

となり，さらに通分すると

　
2

3

„

2

x + 2
− 1

x
− x

x2 + 1

«

=
2

3
· 2x(x2 + 1) − (x + 2)(x2 + 1) − x2(x + 2)

(x + 2)x(x2 + 1)

=
2

3
· (2x2 + 2x) − (x3 + 2x2 + x + 2) − (x3 + 2x2)

(x + 2)x(x2 + 1)

=
2

3
· −4x2 + x − 2

(x + 2)x(x2 + 1)

= − 2

3
· 4x2 − x + 2

(x + 2)x(x2 + 1)

となる。つまり

1

y
· y′ = − 2

3
· 4x2 − x + 2

(x + 2)x(x2 + 1)

となる。さらに両辺に y をかけて

y′ = − 2

3
y · 4x2 − x + 2

(x + 2)x(x2 + 1)

となる。ここで，y = 3

s

(x + 2)4

x2(x2 + 1)
より

y′ = − 2

3
3

s

(x + 2)4

x2(x2 + 1)
· 4x2 − x + 2

(x + 2)x(x2 + 1)

となるので，約分する。ここで，分母の x + 2 を
` 3
√

x + 2
´3
と考える。つまり， 3

√
x + 2 を 3 個かけて

x + 2になったと考える。すると，分子には 3
√

x + 2が 4

個があり，分母には 3 個あるので，約分されて分子に 1

個残る。したがって

y′ = − 2

3
3

s

(x + 2)4

x2(x2 + 1)
· 4x2 − x + 2

3
p

(x + 2)3x(x2 + 1)

と考えて約分すると

y′ = − 2

3

3

s

(x + 2)
4/1

x2(x2 + 1)
· 4x2 − x + 2

3
p

(x + 2)3///////////////x(x2 + 1)

より

y′ = − 2(4x2 − x + 2)

3x(x2 + 1)
3

s

(x + 2)

x2(x2 + 1)

となる。



13 次の関数を微分せよ。

（1）y = xx+1 (x > 0)

解答

y′ = xx+1

„

log x + 1 +
1

x

«

解説

両辺は正であるから，両辺の自然対数をとると

log y = log xx+1

より

log y = (x + 1) log x

両辺を xで微分すると，積の微分より

1

y
· y′ = (x + 1)′ · log x + (x + 1) · (log x)′

となる。ここで，上式の右辺は

(右辺) = (x + 1)′ · log x + (x + 1) · (log x)′

= 1 · log x + (x + 1) · 1

x

= log x + 1 +
1

x

となる。ゆえに，

1

y
· y′ = log x + 1 +

1

x

より，両辺に y をかけて

y′ = y

„

log x + 1 +
1

x

«

となる。ここで，y = xx+1 であったから

y′ = xx+1

„

log x + 1 +
1

x

«

となる。

（2）y = xsin x (x > 0)

解答

y′ = xsin x



(cos x) log x +
sin x

x

ff

解説

両辺は正であるから，両辺の自然対数をとると

log y = log xsin x

より

log y = (sin x) log x

両辺を xで微分すると，積の微分より

1

y
· y′ = (sin x)′ · log x + sin x · (log x)′

となる。ここで，上式の右辺は

(右辺) = (sin x)′ · log x + sin x · (log x)′

= cos x · log x + sin x · 1

x

= (cos x) log x +
sin x

x

となる。ゆえに，

1

y
· y′ = (cos x) log x +

sin x

x

より，両辺に y をかけて

y′ = y



(cos x) log x +
sin x

x

ff

となる。ここで，y = xsin x であったから

y′ = xsin x



(cos x) log x +
sin x

x

ff

となる。

（3）y = xex

(x > 0)

解答

y′ = xex

ex

„

log x +
1

x

«

解説

両辺は正であるから，両辺の自然対数をとると

log y = log xex

より

log y = ex · log x

両辺を xで微分すると，積の微分より

1

y
· y′ = (ex)′ · log x + ex · (log x)′

となる。ここで，上式の右辺は

(右辺) = (ex)′ · log x + ex · (log x)′

= ex · log x + ex · 1

x

= ex

„

log x +
1

x

«

となる。ゆえに，

1

y
· y′ = ex

„

log x +
1

x

«

より，両辺に y をかけて

y′ = y · ex

„

log x +
1

x

«

となる。ここで，y = xex

であったから

y′ = xex

ex

„

log x +
1

x

«

となる。

（4）y = xlog x (x > 0)

解答

y′ = 2xlog x−1 log x

解説

両辺は正であるから，両辺の自然対数をとると

log y = log xlog x

より

log y = log x · log x



つまり

log y = (log x)2

となる。両辺を xで微分すると，合成関数の微分より

1

y
· y′ = 2 log x · (log x)′

となる。ここで，上式の右辺は

(右辺) = 2 log x · (log x)′

= 2 log x · 1

x

=
2 log x

x

となる。ゆえに，

1

y
· y′ =

2 log x

x

より，両辺に y をかけて

y′ = y · 2 log x

x

となる。ここで，y = xlog x であったから

y′ = xlog x · 2 log x

x

より
1

x
= x−1 なので

y′ = 2xlog xx−1 log x

から

y′ = 2xlog x−1 log x

となる。

（5）y =
`√

x
´x

(x > 0)

解答

y′ =
1

2

`√
x
´x

(log x + 1)

解説

両辺は正であるから，両辺の自然対数をとると

log y = log
`√

x
´x

より

log y = x log
√

x

となる。ここで，
√

x = x
1
2 より

log y =
1

2
x log x

となる。両辺を xで微分すると，積の微分より

1

y
· y′ =

1

2

˘

(x)′ · log x + x · (log x)′
¯

となる。ここで，上式の右辺は

(右辺) =
1

2

˘

(x)′ · log x + x · (log x)′
¯

=
1

2

„

1 · log x + x · 1

x

«

=
1

2
(log x + 1)

となる。ゆえに，

1

y
· y′ =

1

2
(log x + 1)

より，両辺に y をかけて

y′ = y · 1

2
(log x + 1)

となる。ここで，y = (
√

x)
x であったから

y′ =
1

2

`√
x
´x

(log x + 1)

となる。

（6）y = (sin x)x
“

0 < x <
π

2

”

解答

y′ = (sin x)x
n

log(sin x) +
x

tan x

o

解説

両辺は正であるから，両辺の自然対数をとると

log y = log (sin)x

より

log y = x log(sin x)

となる。ここで両辺を x で微分すると，積の微分と合成

関数の微分より

1

y
· y′ = (x)′ · log(sin x) + x · {log(sin x)}′

となる。ここで，上式の右辺は

(右辺) = (x)′ · log(sin x) + x · {log(sin x)}′

= 1 · log(sin x) + x · 1

sin x
· (sin x)′

= 1 · log(sin x) + x · 1

sin x
· cos x

= log(sin x) +
x cos x

sin x

= log(sin x) +
x

sin x
cos x

= log(sin x) +
x

tan x

となる。ゆえに，

1

y
· y′ = log(sin x) +

x

tan x

より，両辺に y をかけて

y′ = y ·
n

log(sin x) +
x

tan x

o

となる。ここで，y = (sin x)x であったから

y′ = (sin x)x
n

log(sin x) +
x

tan x

o

となる。

（7）y = (log x)x (x > 1)

解答

y′ = (log x)x



log(log x) +
1

log x

ff



解説

両辺は正であるから，両辺の自然対数をとると

log y = log (log x)x

より

log y = x log(log x)

となる。ここで両辺を x で微分すると，積の微分と合成

関数の微分より

1

y
· y′ = (x)′ · log(log x) + x · {log(log x)}′

となる。ここで，上式の右辺は

(右辺) = (x)′ · log(log x) + x · {log(log x)}′

= 1 · log(log x) + x · 1

log x
· (log x)′

= log(log x) + x · 1

log x
· 1

x

= log(log x) + x/ · 1

log x
· 1

x/

= log(log x) +
1

log x

となる。ゆえに，

1

y
· y′ = log(log x) +

1

log x

より，両辺に y をかけて

y′ = y ·


log(log x) +
1

log x

ff

となる。ここで，y = (log x)x であったから

y′ = (log x)x



log(log x) +
1

log x

ff

となる。

（8）y = (tan x)sin x
“

0 < x <
π

2

”

解答

y′ = (tan x)sin x



(cos x) log(tan x) +
1

cos x

ff

解説

両辺は正であるから，両辺の自然対数をとると

log y = log (tan x)sin x

より

log y = (sin x) log(tan x)

となる。ここで両辺を x で微分すると，積の微分と合成

関数の微分より

1

y
· y′ = (sin x)′ · log(tan x) + sin x · {log(tan x)}′

となる。ここで，上式の右辺は

(右辺) = (sin x)′ · log(tan x) + sin x · {log(tan x)}′

= cos x · log(tan x) + sin x · 1

tan x
· (tan x)′

= (cos x) log(tan x) + sin x · 1

tan x
· 1

cos2 x

= (cos x) log(tan x) + sin x · 1
sin x
cos x

· 1

cos2 x

= (cos x) log(tan x) + sin x · cos x

sin x
· 1

cos2 x

= (cos x) log(tan x) + sin x////// ·
cos x//////

sin x//////
· 1

cos
2/
x

= (cos x) log(tan x) +
1

cos x

となる。ゆえに，

1

y
· y′ = (cos x) log(tan x) +

1

cos x

より，両辺に y をかけて

y′ = y ·


(cos x) log(tan x) +
1

cos x

ff

となる。ここで，y = (tan x)sin x であったから

y′ = (tan x)sin x



(cos x) log(tan x) +
1

cos x

ff

となる。


