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　三角形の���辺に接する円を，その三角形の��内接円��という。

　右の図のように，△$%&�の内接円の中心を�,�とすると，

△$%&�は△,%&，△,&$，△,$%に分けられる。

これらの面積の関係から
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が成り立つ。△$%&�の内接円の半径を�U�とすると
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したがって，次のことが成り立つ。

三角形の内接円と面積

△$%&�の面積を�6，△$%&�の内接円の半径を�U�とするとき
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　このことを利用して，��辺の長さが�D �，E �，F ��である�△$%&�の内接円の

半径�U�を求めてみよう。△$%&�の面積を�6�とすると，

余弦定理から
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　　　よって　���U ��(� �　より両辺��で割って　U (�
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練習��　��辺の長さが�D �，E �，F ��である�△$%&�について，次のものを求めよ。

　　　���　△$%&�の面積�6　　　　　　�����　内接円の半径�U�
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√の中を全部計算しないこと。

�･�･� �は�����になるので��

この√の中は��が�個ある。
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U�三角形の内心!

　三角形の内角の二等分線について，次の定理が成り立つ。

三角形の内角の二等分線

定理４　三角形の���つの内角の二等分線は���点で交わる。

　定理���を証明するために，次のことを用いる。

点�3�が�A�上にある�� �
2
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A3
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点�3�が���辺�2;，2<

から等距離にある
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△234と△235が合同なので34 35

　�;2<�の二等分線�A�と点�3�について，次が成り立つ。

湖①

湖②

それぞれの湖に水を飲みに行くとき��

�同じ距離になる点の集まり

点�3�と直線�A�の距離は，

3�と�@上の点を結ぶ線分のうち，

最も短いものの長さとなっている。

@
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湖

のどが渇いた���

垂線の足という

距離とは「最短距離」のことです

湖①

湖②

のどが渇いた���

どっちの湖の方が近いかな���

U

　直線�A�と，A�上にない点�3�に対して，

3�から�A�に垂線を引き，A�との交点を�4�と

するとき，4�を�垂線の足�という。

　また，線分�34�の長さを

�点�3�と直線�@の距離�という。
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【定理４の証明】△$%&�において，
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　　�%�の二等分線と��&�の二等分線の交点を�

　　,とし，,�から辺�%&，&$，$%�に下ろした垂線を，

　　それぞれ�,'，,(，,)�とする。

　　,�は��%�の二等分線上の点であるので

　　　　,) ,'　……①　

$

% &'

()

,

　　が成り立つ。

　　また,�は��&�の二等分線上の点であるので

　　　　,( ,'　……②　

　　が成り立つ。

　　よって①，②から�,) ,(�となるので，
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　　,�は��$�の二等分線上にもある。

　　したがって，

　　三角形の���つの内角の二等分線は���点で交わる。　W

実はこの線は�$の二等分線だった
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　上の証明により，次のことがいえる。

　　　,'�%&，,(�&$，,)�$%
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　よって，この点�,�を中心とする半径�,'�の円は，

△$%&�の���辺に接する。

　この円を�△$%&�の��内接円��といい，内接円の中心�,�を�△$%&�の��内心��という。
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　三角形の内心は，��つの内角の二等分線が交わる点である。


