
空間図形に含まれる三角形に着目して，距離や面積を求めてみよう。

空間図形は「いくつかの平面図形がくっついただけ」と考えよう！

3

$

%

+

��� ���
���P

���

$ %

実際にも使えそうな方法ですね。���は分

度器で測れそうですし������や���はその方

向に腕を向ければ測れそうです。
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角度が分かっている三角形を

取り出して考える

応用例題��

　　　����P�離れた山のふもとの���地点�$�と�%�から��

　　　�山の頂上�3�を見ると�

　　　　�3$% ���，�3%$ ����

　　　であった。また，%�から�3�を見上げた角度は�����

　　　であった。右の図において，3�と�%�の標高差�3+�

　　　を求めよ。

　　　考え方　図の直角三角形�%3+�に着目すると，

　　　　　　　3+ %3VLQ��� �である。

　　　　　　　そこで，まず�%3�の長さを求める。
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　　　また���直角三角形3+%�において
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3

+
$

%
���P
��� ��� ���

練習���　����P�離れた���地点�$�と�%�から，気球�3�の真下で

　　　�%�と同じ標高の地点�+�を見たとき，

　　　　　　�+$% ���，�+%$ ���

　　　であった。また，%�から�3�を見上げた角度は�����で

　　　あった。

　　　右の図において，気球�3�の高さ�3+�を求めよ。
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角度が分かっている三角形は

△3$%でなくて△+$%です。
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　　また���直角三角形3+%�において
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　　　　　3+ %+WDQ��� ��(� �
�

(�
 ��(� 　　　P　��(� �P

第４章「図形と計量」第２節　三角形への応用　８　空間図形への応用



$

%

&

'

0

�

���

$

& 0 '

封筒で正四面体を作ってみよう！

$

% 0

すべての面が正三角形である

三角錐を正四面体といいます。
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直角三角形$&0において���
$0
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高さ
斜辺

 �VLQ��� �より両辺に$&をかけて

$0 $&�VLQ��� �としている。ただ���この直角三角形は����(� �の直角三角形

であるから���$& �であるので$0 �(� �となることはすぐに分かる。
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応用例題��

　　　��辺の長さが���の正四面体�$%&'�において，

　　　辺�&'�の中点を�0�とするとき，次のものを求めよ。

　　　���　FRV�$%0�の値

　　　���　�$%0�の面積�6

　考え方　���　△$%0�において，��辺の長さから求める。

　　　　　���　まず，VLQ�$%0�の値を求める。
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　が成り立つ。

　この式の図形的な意味を考えてみよう。　

　右図のように���%0の延長線上に%0 01となる

　点1をとる。%0 $0であったので���

　$0 %0 01が成り立つから���0は

　�点�$���%���1�を通る円の中心となる。

　したがって���%1はこの円の直径となるから

　直径に対する円周角より�%$1 ���となる。

　直角三角形$%1において
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　が成り立つ。

　これが�※�の図形的意味である。

　このことを用いると

　△$%0の面積を

　簡単に求められる。

　三平方の定理より� �$% � �$1  �%1 �が成り立つ。
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　%1を底辺と考えると���△$%0の高さと△$01の高さは同じであり

　またそれぞれの底辺も%0と01で同じであるから���△$%0と△$01の

　面積は等しい。つまり���△$%0の面積は△$%1の面積��(� �の半分であるから

　△$%0の面積は��(� �
�

�
 (� �である。
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練習���　右の図のように，

　　　　　　$% �，$' �，$( ��

　　　である直方体�$%&'�()*+�がある。�

　　　���　FRV�%('�の値を求めよ。

　　　���　�%('�の面積�6�を求めよ。
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■�正四面体の体積

��辺の長さが���の正四面体�$%&'�の体積�9�を求める。

次の� �に適する数字����～����を入れて，説明を完成させよう。
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頂点�$�から底面の正三角形�%&'�に垂線�$+�を下ろすと，

$+�の長さは正四面体の高さ�K�に等しい。△$%+，△$&+，

△$'+�はどれも斜辺が等しく$+が共通になるので

合同な直角三角形となるから，%+ &+ '+�

である。よって，点�+�は�△%&'�の外接円の中心で，

%+�はその外接円の半径である。

%+�の長さを求めるには，△%&'�に正弦定理を使って
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また，前ページの応用例題���の結果を用いて求めることもできる。

正四面体�$%&'�を角錐�&$%0�と角錐�'$%0�に分けると，

��つの角錐は，底面の�△$%0�が共通で高さが等しいから，

体積が等しい。角錐�&$%0�について

△$%0を底面と考えると���$0�&0���%0�&0

であるから△$%0�&0が成り立つので���&0は高さになる。
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