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直角三角形においては，��辺の長さの間に三平方の定理が成り立つ。

ここでは，一般の三角形において���辺の長さの間に成り立つ関係を

調べよう。

�余弦定理!

　下の図�>�@，>�@�のように，△$%&�の�$�が鋭角の場合について調べる。

　△$%&�の頂点�&�から辺�$%�またはその延長に垂線�&'�を下ろす。
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　上の図�>�@，>�@�では，いずれの場合にも次が成り立つ。

三平方の定理
図�>�@�では�
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より同じになる。

　　　 �%&  �&' � �%' �……①，

　　　直角三角形△$&'�において
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　　　両辺に$&をかけて�&' $&VLQ$ �

　　　$& �E�より�&' EVLQ$……②�，　

　　　同様に���直角三角形△$&'�において
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　ゆえに， �%& �すなわち� �D �は①に②�③を代入することで次のように表される。
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　このことは，△$%&�の�$�が直角の場合にも，成り立つ。

�D  �E � �F ��EFFRV��� �となり���FRV��� ��であるから���この式で��EFFRV����の部分は消えてしまう。

ゆえに��� �D  �E � �F �が成り立つ。これは��$ ���のときに三平方が成り立つと言っているだけである。

つまり三平方の定理は余弦定理の一部である。�
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練習���　右の図�>�@�のように，$�が鈍角の場合にも

　　　　 �%&  �&' � �%' ，
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　　　が成り立つことを確かめよ。
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直角三角形�%&'�において，三平方の定理により

　　　　　 �%&  �&' � �%'

直角三角形�$'&�において，�&$' �����$�

であるから直角三角形△$&'�において
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　前ページで調べたことから，次の��余弦定理��が得られる。
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　余弦定理

　△$%&�において，次が成り立つ。

　　　 �D  �E � �F ��EFFRV $

　　　 �E  �F � �D ��FDFRV %

　　　 �F  �D � �E ��DEFRV &

対辺と対角

Kの両隣の�辺

�を忘れないことマイナスに注意
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三角形がつぶれてしまった

�●  �△ � �□ ��△□FRV��

�●  �△ � �□ ��△□���

�●  �
� 
�□ △

● □�△

�

K ��とすると

確かにこの関係になっている
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　三角形の���辺の長さとその間の角の大きさがわかっている場合には�

余弦定理を用いて，残りの辺の長さを求めることができる。

例題��　�$%&�において，E �，F �，$ ����のとき，D�を求めよ。

$ %

&

D

�

���

�

S　余弦定理により
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練習���　次のような��$%&�において，指定されたものを求めよ。

　　　���　E �，F �(� ，$ ����のとき　D

　　　���　D �，F �，% �����のとき　E

　　　���　D (� ，E �，& �����のとき　F
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プラスになることに注意

負の数は

かっこをつける
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プラスになることに注意
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練習���　林をはさんだ���地点�$，%�と地点�&�について，右の図のようになった。

　　　$，%�間の距離を求めよ。

S

余弦定理により
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��超有名�円に内接する四角形�$%&'�において，

�$ ���，$% �，%& �，'$ ��のとき，

次のものを求めよ。

���　線分�%'�の長さ　　　　���　線分�&'�の長さ
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���　△$%'�に余弦定理を使うと
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���　円に内接する四角形において，

　向かい合う角の和は������であるから

　　　　　　�%&' ����

　よって，&' [�とおいて，

　△%&'�に余弦定理を使うと
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　左辺と右辺を入れ替えて
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三角形の�辺と�つの角が分かれば��

�余弦定理より残りの辺も求められる。
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　[!��であるから　[ �　したがって　&' ��



　余弦定理より

　　 �D  �E � �F ��EFFRV $ �より� �D �と��EFFRV$ �を移項して

　　��EFFRV$ �E � �F � �D �　さらに両辺��EF�で割って　�FRV$ 
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�EF
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　　� �E  �F � �D ��FDFRV % �より� �E �と��FDFRV% �を移項して
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���F �D �E

�FD
�

　　� �F  �D � �E ��DEFRV& �より� �F �と��DEFRV& �を移項して
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よって���△$%&�において，次の等式が成り立つ。�
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　三角形の���辺の長さがわかっている場合には，上の等式を用いて，��つの角の大きさを
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対辺と対角

Kの両隣の�辺

これ�すごく大事！

求めることができる。
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約分できるかもしれないので�

��分母は計算しないで最後ま

で残しておく。

簡単な図を書くこと。

長さが√で分からないことも多いので���

正確でなくてもいい。

√の�乗はかっこをつける

例題��　�$%&�において，D (� ，E �，F ��のとき，FRV$ �の値と�$�を求めよ。
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この問題のように表を使わずにFRV�の値から三角形の角度を求める場合��

求められる角度は��������������������������������しかない。
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�より，�U ��とすると�[ ��となる。

原点�2�を中心とする半径���の円上で，�[�座標が���である点は�下図の3と4の��つある。
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円と�[�軸の正の部分との交点を$とすると，求める�K�は下図で��$23�と�$24�である。

[�軸の正の方向を����として，反時計回りに角を測る。
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練習���　次のような��$%&�において，指定されたものを求めよ。
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この問題は���実際には鈍角三角形になるが���

そんなことは最初から分からないので簡単な図をかけばよい。
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簡単な図
���　余弦定理により
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3RLQW　余弦定理を使う場合，△$%&�について与えられた条件によって，

　　　　利用する等式を使い分ける。

　　　　　　����ページ�例題���

　　　　　　　辺の長さを求めたい→　 �D  �E � �F ��EFFRV$

　　　　　　　　　　　例題���

　　　　　　　角の大きさを求めたい→　FRV$ 
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辺の長さは正なので��分母は必ず正

　�FRV$ 
���E �F �D

�EF
�から，△$%&�において，FRV$ �の符号は� �E � �F � �D �の符号

と同じになる。
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つまり��� �E � �F �と� �D �のどちらが大きいかを調べると���$�が鋭角か鈍角か図を描かなくても分かる。

��� �E � �F �と� �D �の大小によって，次のことがいえる。
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練習���　△$%&�の���辺の長さが次のようなとき，$�は鋭角，直角，鈍角のいず

　　　れであるかを調べよ。
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���� �E � �F �の方が� �D �より大きい。

　 �E � �F ! �D が成り立つので，$�は鋭角

���　 �D  ��， �E  ��， �F  ��

　よって， �E � �F  ����� ���から�

　 �D �の方が� �E � �F �より大きい。 �E � �F � �D が成り立つので，$�は鈍角


