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　したがって，\�の増減表は次のようになる。
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�
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�
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H

U　\ � ��となる�[�の値は次のように求めてもよい。

　\ � ��とすると， [H !��より　　VLQ[ FRV[

　このとき，FRV[
��であるから，両辺を�FRV[ �で割ると　　
VLQ[

FRV[
 �

　すなわち　　WDQ[ �

　��[��S�の範囲でこれを解くと　　[ 
S

�
，
�

�
S

次の関数に極値があれば，それを求めよ。29
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�
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 解説

���　[��
��であるから，定義域は
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　 �[ ��[���を�[���で割った商は�[��，余りは���であるから，
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�[ �
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　と変形できる。
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　\ � ��とすると　　[ �，�

　したがって，\�の増減表は次のようになる。
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　関数�\�は�[ ���で微分可能でない。

　したがって，\�の増減表は次のようになる。
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関数�I � 
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���[ �[ D

�[ �
�が�[ ��で極値をとるように，定数�D�の値を定めよ。また，こ30

のとき，�I � 
[ �の極値を求めよ。
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 解説
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ゆえに，次の増減表が得られ，条件を満たす。
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また，[ ��で極大値���，
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また，I � 
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ゆえに，次の増減表が得られ，条件を満たす。
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�が極大値����をとるように，定数�D�の値を定めよ。32
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 解説
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ゆえに，I � 
[ �の増減表

は右のようになる。
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