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　をなす平面で���つの立体に分けるとき，小さい方の立体の体積を求めよ。
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　��次関数のグラフと接線�@�で囲まれた部分を�[�軸の周りに回転して立体を作る。その
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を�\�軸の周りに���回転させてできる回転体の体積を求めよ。

S　�
�H

� ��� S

 解説

[�

�\

�2

�H

� �H

�

� �

\ [H �から　　\ � [H

接線の方程式は　　\� �H  �H �[ 
��

よって　　\ �H �[ 
��

\ [H �から　　[ ORJ\

\ �H �[ 
�� �から　　[ 
\
�H
��

したがって，求める回転体の体積を�9�とすると

　　　9 S' �
�H �

� ��
\
�H
� G\�S' �

�H
�

� 
ORJ\ G\

ここで　'
�

� 
ORJ\ G\ ' � 
\ �
�

� 
ORJ\ G\

　　　　　　　　　� \ �
� 
ORJ\ �' ･･\ � 
�ORJ\

�

\
G\

　　　　　　　　　� \ �
� 
ORJ\ ��' � 
\ �ORJ\G\

　　　　　　　　　� \ �
� 
ORJ\ ���\ORJ\ ��' ･\

�

\
G\

　　　　　　　　　� \ �
� 
ORJ\ ���\ORJ\ 
�\ �& ���&�は積分定数�

ゆえに　　9 S
�

�H

� ���･
�
�H

�\

�

�\
�H

\ �S
�

�H

� ��\ �
� 
ORJ\ �� 
�\ORJ\ \

　　　　　�� �
�H

� ��� S

放物線�\ � �[ ��[���と�[�軸によって囲まれた部分を�\�軸の周りに���回転させてでき18

る立体の体積を求めよ。
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よって囲まれる部分を，直線�2$�を軸として回転させて得られる立体の体積を求めよ。
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軸の周りに���回転させてできる回転体の体積を�9�とする。9�の最大値と最小値を求めよ。
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領域�'�は，右の図の斜線部分のようになるから
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D，E�を正の数とする。楕円�
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�D
�

�\
�E
 ��で囲まれた図形を直線�[ �D�の周りに���回転24

させてできる立体の体積を�9�とおく。D，E�が� �D � �E  ��という関係を満たしながら動く

とき，9�の最大値を求めよ。
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囲まれた図形は，[�軸に関して対称であるから，
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[\]�空間において，連立不等式25

　　　　　　��[��，��\��，��]��， �[ � �\ � �] ��[\����

の表す立体を考える。

���　この立体を平面�] W�で切ったときの断面を�[\�平面に図示し，この断面の面積�6 � 
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　を求めよ。

���　この立体の体積を求めよ。�
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　よって，平面�] W�で切ったときの断面は，

　右の図の斜線部分である。ただし，境界線
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座標空間において，[\�平面内で不等式� [��， \���により定まる正方形�6�の���つの頂26

点を�$�� 
��，�，� ，%�� 
�，�，� ，&�� 
�，��，� ，'�� 
��，��，� �とする。正方形�6�を，

直線�%'�を軸として回転させてできる立体を� �9 ，直線�$&�を軸として回転させてできる

立体を� �9 �とする。

���　��W���を満たす実数�W�に対し，平面�[ W �による� �9 �の切り口の面積を求めよ。



���　 �9 �と� �9 �の共通部分の体積を求めよ。
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���　直角二等辺三角形�$%2�を直線�%2�を軸として回

　転させてできる円錐�(�の側面上��ただし，点�%�は除
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�&���　 �9 �と� �9 �の共通部分の図形は，\]�平面に関して対

　称であるから，求める体積は���[���の範囲の体積

　を���倍したものとなる。

　更に， �9 �と� �9 �の共通部分の図形は，][�平面に関し

　ても対称である。

　よって， �9 �と� �9 �の共通部分の平面�[ W �による切り

　口は，右の図のようになる。

　ゆえに，この切り口の面積は
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[\]�空間において，��点�3�� 
�，�，� ，4�� 
��，�，� �を考える。線分�34�を�[�軸の周りに�27

��回転させて得られる立体を�6�とする。立体�6�と，��つの平面�[ ��および�[ ���で囲

まれる立体の体積を求めよ。
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線分�34�上の点�$�は，2�を原点，V�を実数として�2$ 23�V34�����V 
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���　W�を���W���を満たす実数とするとき，平面�] W�と�△345�の交わりに現れる線分

　の���つの端点の座標を求めよ。

���　△345�を�]�軸の周りに回転させて得られる回転体の体積を求めよ。
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���　線分�$%�を，平面�] W�上で�]�軸の周りに���回転
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　ゆえに，求める体積を�9�とすると
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[\]�空間において，点�$�� 
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�，�，� �を通る平面上にあり，正29

三角形�$%&�に内接する円板を�'�とする。円板�'�の中心を�3，円板�'�と辺�$%�の接点

を�4�とする。

���　点�3�と点�4�の座標を求めよ。

���　円板�'�が平面�] W�と共有点をもつ�W�の値の範囲を求めよ。

���　円板�'�と平面�] W�の共通部分が線分であるとき，その線分の長さを�W�を用いて表

　せ。

���　円板�'�を�]�軸の周りに���回転させてできる立体の体積を求めよ。
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���　点�3�は正三角形�$%&�の内心である。
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　  ] W�で切った切り口の図形は，線分�67�を�]�軸の

　周りに���回転させてできる図形であり，右の図の

　斜線部分である。

　斜線部分の面積は
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���　平面で，半径�U���U 
�� �の円の中心が，辺の長さが���の正方形の辺上を���周すると30

　き，この円が通過する部分の面積�6 � 
U �を求めよ。

���　空間で，半径���の球の中心が，辺の長さが���の正方形の辺上を���周するとき，この

　球が通過する部分の体積�9�を求めよ。
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 解説

���U
���U

�

����　円が通過する部分は右の図のようになる。

　���つの角の四分円は合わせて���つの円になる。

　よって　　6 � 
U  
�� � �

� 
�� �U ��･�U�S �U

　　　　　　　　 ��U��S 
�� �U

� W

( �� �W
���　正方形を�[\�平面上に置いて，球が通過する部分を

　平面�] W�������W 
�� �で切ったときの断面積を�I � 
W �

　とする。

　角の球の切断面の半径を�U�とすると， �W � �U  ��であ

　るから，I � 
W �は�����の結果の式において

　　　　　　　U ( �� �W 　����W���

　としたものである。

　I � 
�W  I � 
W �であるから，求める体積�9�は

　　　　9 '��
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W GW �' �
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I � 
W GW �' �
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� ����( �� �W � 
�S � � 
�� �W GW
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� ��W
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���S ��

�

半径���の球� �7 �と半径���の球� �7 �が，内接した状態で空間に固定されている。半径���の球�31

6�が次の条件��$�，�%��を同時に満たしながら動く。

　�$�　6�は� �7 �の内部にあるか� �7 �に内接している。

　�%�　6�は� �7 �の外部にあるか� �7 �に外接している。

6�の中心が存在しうる範囲を�'�とするとき，立体�'�の体積を求めよ。
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 解説
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]

�

�

�7

�7

�� �

[\]�空間で考える。

球� �7 �と球� �7 �について，与えられた条件から，それぞれ

の中心を�� 
�，�，�，� 
�，�，� �とおくことができる。

球�6�の中心の座標を�� 
;，<，= �とする。

条件��$��から

　　�6�と� �7 �の中心間の距離�����6�と� �7 �の半径の差�

すなわち　　( ���; �< �= ����

よって　　　 �; � �< � �= ��

また，条件��%��から

[

]

\

�

�[ � �\ � �]  �

�
� 
�[ � � �\ � �]  �

�

2

　　�6�と� �7 �の中心間の距離�����6�と� �7 �の半径の和�

すなわち　　( ���� 
�; � �< �= ����

よって　　　 �
� 
�; � � �< � �= ��

ゆえに，6�の中心が存在しうる範囲は，[\]�空間内の

球� �[ � �\ � �]  ��の表面または内部から，球�

�
� 
�[ � � �\ � �]  ��の内部を除いた部分である。

これは，立体を平面�] ��で切ったときの断面を，

[�軸の周りに���回転させてできる立体の体積と等し

い。
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平面�] �
�[ � �\  �

�
� 
�[ � � �\  �

2

平面�] ��で切ったときの断面は，右の図の斜線部分

のようになる。

ゆえに，求める体積は
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T　取り除く部分の立体を� �' �とする。

　 �' �は平面�[ ��に関して対称であり， �' �を平面�[ W�����W 
�� �で切ったときの断面

　積は　　　S�
�\ 
� �]  S�� �� �

� 
�W �

　よって， �' �の体積は
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�W � GW �S
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　ゆえに，立体�'�の体積は　　
�

�
S･

�� �
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�
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��

�
S

��曲線� �& ：\ FRV[， �& ：\ FRV�[�D���D 
!� �が互いに接している。すなわち， �& ，32

�& �には共有点があり，その点において共通の接線をもっている。

���　正の数�D�の値を求めよ。

���　��[��S�の範囲で���曲線� �& ， �& �のみで囲まれる図形の全面積を求めよ。

���　����の図形を�[�軸の周りに���回転させてできる回転体の体積を求めよ。
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 解説

���　I � 
[  FRV[，J � 
[  FRV�[�D���D 
!� ��とすると

　　　　　　I � � 
[  �VLQ [，�J � � 
[  ��VLQ �[

　���曲線の接点の�[�座標を�W�とすると，接点の�\�座標，およびその点における微分係数

　が等しいから　　　I � 
W  J � 
W 　かつ　I � � 
W  J � � 
W

　よって　　�
 FRV W �FRV�W D ……�①

 VLQ W �VLQ �W ……�②

　②�から　　VLQ W �VLQ WFRVW　　��　ゆえに　VLQ W ��FRVW 
��  �

　よって　　VLQ W �　または　FRV W 
�

�

　>�@　VLQ W ��のとき　　W PS���P�は整数�

　　W �QS�のとき，①�から　　D �

　　W ��Q 
�� S�のとき，①�から　　D ��

　　これらは�D!��に反するから不適。

　>�@　FRV W 
�

�
�のとき　　①�から　FRV W � �FRV W���D

　　よって　
�
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���D　　　　ゆえに　D 
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���　FRV�[�
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�
�FRV[ � �FRV [�FRV[�

�

�
 �

�

� ��FRV[
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　FRV[ 
�

�
�……�④�の���つの解を�[ D�����D ��

S

�

　とすると，��[��S�において，④�の解は

　　　　　　[ D，�S�D，�S�D

　よって，���曲線� �& ， �& �は�[ D，�S�D，�S�D�の

　���点で接している。また，③�から， �& �が常に� �& �の

　上側にある。

　よって，右の図の斜線部分の面積を求める。

　求める面積を�6�とすると

　　6 ' D
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S�において�\ �FRV[ �と�\ FRV�[�
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�

　とは�[ S�D�で接するから，右の図の斜線部分を回転

　させると考えてよい。求める体積を�9�とすると
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実数�K�が動くとき，[\�平面上の動点�3�� 
�，VLQK �および�4�� 
�FRVK，� �を考える。K�が�33

��K�
S

�
�の範囲を動くとき，平面内で線分�34�が通過する部分を�'�とする。'�を�[�軸

の周りに���回転してできる立体の体積�9�を求めよ。
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 解説
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VLQK
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[
�FRVK

�
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線分�34�の方程式は

 K ��のとき　　  \ ��� �� �[ ��

�� �K
S

�
�のとき　　  �

[

�FRVK

\

VLQK
�

　　　　　　　　　　　　� �� �[ �FRVK �　……�①

 K
S

�
�のとき　　  [ ��� �� �\ ��

①�から　　  \ VLQK � ���
[

�FRVK

�� �[ ��である�[�を固定し，  [ �FRVK �となるときの�K�� ��� �K
S

�
�を�

D�� ��� �D
S

�
�とする。

�� �K D�であるとき，I � 
K  VLQK � ���
[

�FRVK
�とすると

　　　　　I � � 
K  �FRVK � ���
[

�FRVK
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VLQK
�FRV K
 

�� �FRV K [

� �FRV K

I � � 
K  ��とすると　　FRVK �)
[

�
　……�②

��[��FRVK �であるから　　�� �)
[

�
��

K � … E … D

I � � 
K � � � � �

I � 
K � � 極大 � �

よって，②�を満たす�K�� �� �K D��がただ���つ存在

する。

その�K�を�E�� �� �E D��とすると， �� �K D�におけ

る�I � 
K �の増減表は右のようになる。

したがって　　 �� �I � 
K I � 
E
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ゆえに　　I � 
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 K �，
S

�
�の場合も考えると，線分�34�が通過する領

域�'�は，
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� ���
�
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[

�
， �� �[ �

すなわち　　 ��
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したがって　　9 S' �
� �
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�
W�とおくと　　  G[ �GW

[�と�W�の対応は右のようになる。
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点�3�� 
W，V �が�V (�
�W ��W�を満たしながら�[\�平面上を動くときに，点�3�を原点を中心34

として�����回転した点�4�の軌跡として得られる曲線を�&�とする。更に，曲線�&�と�[�軸で

囲まれた図形を�'�とする。

���　点�4�� 
[，\ �の座標を，W�を用いて表せ。

���　直線�\ D�と曲線�&�がただ���つの共有点をもつような定数�D�の値を求めよ。

���　図形�'�を�\�軸の周りに���回転して得られる回転体の体積�9�を求めよ。
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 解説

���　点�3��W，(�
�W 
��W �を複素数平面上の点�W��(�

�W 
��W L�とみなす。この点を，

　原点を中心として�����回転した点は

　　　�FRV��� 
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　よって，点�4�の座標は　　��
�W �
�(�
�

W， �W �� (�
�

W

���　まず，曲線�&�の方程式を求める。

　曲線�&�上の任意の点�� 
[，\ �は�����から，[ � �W �
�(�
�

W，\ �W � (�
�

W�と表される。

　このとき　　[�\ (� W，[��\ � �W

　これらから�W�を消去すると　　[��\ �
�

� �
�[ \

(�

　整理すると　　 �[ ���\ 
�� [��
�\ 
��\  �　……�①

　\ D�を代入すると　　 �[ ���D 
�� [��
�D 
��D  �　……�②

　②�の判別式を�'�とすると，直線�\ D�と曲線�&�がただ���つの共有点をもつための条件

　は　　' �

　ここで　　' �
� 
��D � ���

�D 
��D  �D��

　' ��から　　�D�� �　　　　よって　　D �
�

�

T　実数�W�と曲線�&�上の点は���対���に対応する。

　\ �W � (�
�

W�であるから，W�の���次方程式� �W � (�
�

W D �が重解をもつ条件を求める。

　両辺に���を掛けて整理すると　　� �W �(� W��D �

　この判別式を�' ��とすると　　' � ����D
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　すると
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　�\�� X�とおくと　　�G\ GX

　\�と�X�の対応は右のようになる。
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座標平面上の曲線�&�は媒介変数�W���W 
�� �を用いて�[ �W ��W�ORJ � 
�W � ，35

\ �W ��W�ORJ � 
�W � �と表される。&�上の点�3�� 
D，E �における�&�の接線の傾きが�

��H �

��H �
�であるとする。ただし，H�は自然対数の底である。

���　D�と�E�の値を求めよ。

���　4�を座標�� 
E，D �の点とする。直線�34，直線�\ [�と曲線�&�で囲まれた図形を，

　直線�\ [ �の周りに���回転してできる立体の体積を求めよ。
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 解説
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　ゆえに，曲線�&�上の点�� 
[，\ �における接線の傾きは�
�� �

� 
�W � �

�� �
� 
�W � �

�で与えられる。
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�W � �

�� �
� 
�W � �

 
��H �

��H �
�の分母を払って整理すると　　 �
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�W �  H

　すなわち　　W�� �(H　　　　W���であるから　　W (H��

　したがって　　D �
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�� �ORJ(H  H�
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�W � �のとき　　�ORJ � 
�W �  �

　すなわち　　W �

　このとき�[ \ ��であるから，曲線�&�と直線�\ [�の交点は原点のみである。

　��W�(H���とする。
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　曲線�&�上の点�3 ��� 
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　よって　　GV �(� �W 
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　V�と�W�の対応は右のようになる。
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　ゆえに　　9 �(� S�
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[\]�空間内の���点�2�� 
�，�，� ，$�� 
�，�，� ，%�� 
�，�，� �を頂点とする三角形�2$%�を�36

[�軸の周りに���回転させてできる円錐を�9�とする。円錐�9�を�\�軸の周りに���回転させて

できる立体の体積を求めよ。
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 解説

円錐�9�の側面上の点を�3�� 
[，\，] 　���[��， \�� ��とする。

点�3�と点�� 
[，�，� �の距離は�[�であるから
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�[ [ � �\ � �]  �[

よって　　 �]  �[ � �\ 　���[ 
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円錐�9�の平面�\ W �����W 
�� �による切り口の図形は，曲線�&： �]  �[ � �W �と直線

[ ��で囲まれた図形となる。

点�� 
�，W，� �と，この図形内の点との距離の
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したがって，円錐�9�を�\�軸の周りに���回転させてで

きた立体の，平面�\ W �による切り口の図形は右の図

のようになる。

この図形の面積は
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よって，求める立体の体積は
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[\]�空間に���点�3�� 
�，�，� ，$�� 
�，�，� ，%��(�， 
��，� ，&���(�， 
��，� �をとる。37

四面体�3$%&�の� �[ � �\ ���を満たす部分の体積を求めよ。
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 解説
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��点�$，%，&�はすべて�[\�平面上にあり

　　　　　$% %& &$ �(�

よって，△$%&�は正三角形である。

また，23�� 
[\�平面 �である。

四面体�3$%&�の� �[ � �\ ���を満たす部分を�.�とし，

立体�.�を平面��] W �で切ったときの切り口について考

える。

平面��] W ��と辺�3$，3%，3&�の交点をそれぞれ� W$ ，
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W% ， W& �とすると，2$ 2% 2& ��であるから，

平面�] ��上の点�� 
�，�，� �と点� �$ ， �% ， �& �の距離は

すべて　�

ゆえに，立体�.�は�]!��の範囲には存在しないから，

��W���として考える。

直線�$3��の方程式は，[ �，
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 ��であるから，

点� W$ �の座標は　　��，� 
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立体�.�の平面�] W �による切り口は，右の図の黒く塗っ

た部分である。

ここで，△ W$ W% W& �は正三角形であり，黒く塗った���つ

の部分は，すべて合同な図形である。

よって，黒く塗った部分のうち，\���の範囲にあるも

のの面積� $6 �について考える。

図のように点�'，(，)，*�をとると
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したがって，立体�.�の体積を�9�とすると
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座標空間内を，長さ���の線分�$%�が次の���条件��D�，�E��を満たしながら動く。38

　�D�　点�$�は平面�] ��上にある。

　�E�　点�&�� 
�，�，� �が線分�$%�上にある。

このとき，線分�$%�が通過することのできる範囲を�.�とする。.�と不等式�]���の表す

範囲との共通部分の体積を求めよ。
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 解説
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.�を平面�] N��N 
�� �で切った切り口が空集合でないよ

うな�N�の値の範囲は，$�と�2�が一致するとき，

%�� 
�，�，� �であることに注意すると　　��N��

特に�N �，��のとき，切り口は���点のみである。

��N���のときを考える。

対称性から，.�は平面�[ ��における線分�$%�の通過範

囲を�]�軸を中心に回転させた領域である。

線分�$%�と平面�] N�が共有点をもつとき，その共有点

を�'�として，(�� 
�，�，N �とする。
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線分�'(�の長さが最大となるのは，右の図のように，'�

と�%�が一致するときである。

��点�'，%�が一致するときの点�'�を�'��とすると，.�を

平面�] N�で切った切り口は，点�(�を中心とする半径�

' �(�の円である。

' �&：&$ (&：&2�であるから
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よって，.�を平面�] N�で切った切り口の面積は　　S�
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したがって，求める体積は
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[\]�空間の原点と点�� 
�，�，� �を通る直線を�A�とする。39

���　A�上の点�� �
W

�
，

W

�
，

W

�
�を通り�A�と垂直な平面が，[\�平面と交わってできる直線の方

　程式を求めよ。

���　不等式���\�[�� 
�[ �の表す�[\�平面内の領域を�'�とする。A�を軸として�'�を回転

　させて得られる回転体の体積を求めよ。
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 解説

原点を�2，点�� 
�，�，� �を�$�とする。

���　直線�A�の方向ベクトルは　　2$ � 
�，�，�

　点�� �
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�
，

W

�
，

W

�
�を�3�とし，点�3�を通り，A�と垂直な平面上の点を�3 ��� 
[，\，] �とする

　と　　　　2$･33 � �
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　よって，求める直線の方程式は　　[�\ W，] �
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���　[\�平面上の領域�'�は右の図の斜線部分のように

　なる。

　ここで，����で求めた直線を� WP �とする。

　領域�'�が直線� WP �と共有点をもつのは，曲線�

　\ [�� 
�[ �の�[ ��における接線が直線�\ �[���

　すなわち� �P �であることに注意すると，��W���の

　ときである。

　23 X�とすると　　X 
W
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　よって，��W���のとき　　��X�
�
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　また，得られる回転体を�(�とし，点�3�を通り，直線�A�に垂直な平面�/�による�(�の断

　面の面積を�6�とすると，求める体積�9�は
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]　ここで，直線� WP �と�[\�平面上の曲線�\ [�� 
�[ ，

　[�軸との交点をそれぞれ�4，5�とする。

　このとき，立体�(�の平面�/�による断面の面積�

　6�は，平面�/�上で線分�45�が点�3�を中心に���

　回転したときに通過する領域の面積に等しい。

　点�3�から直線� WP �に垂線�3+�を下ろし，+�の

　座標を��[，�[ 
�W，� �とすると
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　3+�は� WP �の方向ベクトル���， 
��，� �に垂直であるから
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　よって，点�+�の座標は　　� �
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　ゆえに，点�+�は�[\�平面上の直線�\ [�上の点であり，直線�\ [�は曲線�\ [�� 
�[ �

　の�[ ��における接線であるから，点�+�は線分�45�の外側にある。

　したがって，線分�45�上で点�3�との距離が最大となるのは点�5，最小となるのは点�4�

　である。

　ゆえに　　　6 S �35 �S �34  S�
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�V ，� �とすると，4�は直線� WP ：[�\ W�上の点でも

　あるから　　V�V�� 
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　点�5�の座標は�� 
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　これに�W �V� �V �を代入して整理すると
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曲線�  \ FRV[ ��� 
�� �[ S �と�\�軸，および直線�  \ ���で囲まれた部分を，\�軸の周りに�40

��回転させてできる立体の体積�9�を求めよ。
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 解説
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曲線�  \ ORJ[，原点を通るこの曲線の接線，および�[�軸で囲まれた部分を，\�軸の周り41

に���回転させてできる立体の体積�9�を求めよ。
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次の曲線と直線で囲まれた部分を，直線�\ ��の周りに���回転させてできる立体の体積�9�42

を求めよ。
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 解説
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　曲線�\ �VLQ[ �と直線�\ ��を�\�軸方向に����だけ平行

　移動すると，それぞれ

　　　　　　\ �VLQ[��，\ ����[�軸�

　に移る。
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U　���　この立体を直線�\ ��に垂直な平面で切るとその断面は半径��VLQ[���の円で

　あるから　　9 ' S
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���　この立体を直線�\ ��に垂直な平面で切るとその断面は半径���([ �の円であるから
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�とする。曲線�  \ VLQ[ �および���直線�  [ W，  [ �W，  \ ��で囲まれた部分を，43

[�軸の周りに���回転させてできる立体の体積を�9� 
W �とする。9� 
W �が最大になる�W�の値を�D

とするとき，FRVD �の値を求めよ。
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 解説

 9 � 
W S' W
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�VLQ [G[�である。
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これを満たす�W�の値を� �D �とすると，9 � 
W �の増減表

は右のようになる。

よって，  W �D �で�9 � 
W �は最大となる。
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!D ��とする。曲線�  \ ��D �[ ��� 
��D �[ D �と�[�軸で囲まれた部分を，\�軸の周りに��44

回転させてできる立体の体積を，曲線�  \ �N[ �を�\�軸の周りに���回転させてできる曲面で

��等分したい。定数�N�の値を求めよ。

S　  N �

 解説

曲線�  \ ��D �[ �と�[�軸で囲まれた部分と，��曲線�  \ ��D �[ ，  \ �N[ �で囲まれた部分

を，\�軸の周りに���回転させてできる立体の体積をそれぞれ� �9 ， �9 �とする。
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放物線�  \ �
�[

(�
[�と直線�  \ [�で囲まれた部分を，直線�  \ [�の周りに���回転させてで45

きる立体の体積�9�を求めよ。
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よって，放物線と直線の交点は
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原点を�2，点�� 
�(�，�(� �を�$�とすると　　2$ �

�� �[ �(� �とし，放物線上の点 3�� ��[，
�[

(�
[ �から

直線�  \ [�に垂線�3+�を下ろし，3+ K，�2+ W�と

おく。

+�を通り，直線�  \ [�に垂直な平面による立体の切り口の面積を�6 � 
W �とすると
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点光源

中心床

ある美術館では，半径���P�の半球のオブジェを展示してい

る。このオブジェは，右の断面図のように，水平な床にお

わんを伏せた形で置かれていて，オブジェの中心から真上

に���P�離れた点にある点光源で照らされている。このとき，

点光源の光が当たらない陰の部分��ただし，オブジェの外部

で，床より上��の体積�9�を求めたい。

���　中心から点光源までの高さが���P，半球の半径が�
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　D�P��D 
�� �となるモデルを考える。このときの陰の部分の体積�9 � 
D �を求めよ。

���　体積�9�を求めよ。
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 解説
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���　半球のオブジェの中心を�2�，点光源を�3�とする。

　[\�平面において，2�� 
�，�� ，3�� 
�，�� �として，点�$，

　%，&，'�を右図のように定めると，△2&$4△2$3�

　より　　2&：2$ 2$：23

　よって，2& �2$  �D �となるから，&�� 
�，� �D �である。

　弧�$%�を�\�軸の周りに回転した回転体の体積を� �9 �とす
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　ゆえに， �2'  �D �'3  �D �
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�の部分，および�\�軸とで囲まれた図形を考える。この図形を�[�軸

の周りに���回転させてできる回転体の体積を求めよ。
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���　関数�I � 
[  
[H �FRV[ 
�VLQ[ �を微分せよ。48

���　J � 
[  
�S[H VLQS[ �とする。Q���[�Q ���Q �，�，�，……��における�\ J � 
[ �の

　グラフと�[�軸で囲まれた図形を，[�軸の周りに���回転してできる回転体の体積� Q9 �を求

　めよ。
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& Q9 �を求めよ。
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& Q9 �は初項�
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� �
�SH 
�� ��SH ，公比� ��SH �の無限

　等比級数である。

　 ��SH ���であるから，この級数は収束し，その和は
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媒介変数�W�を用いて�  [ �W ，  \ �W �と表される曲線を�& �とする。ただし，W�は実数全体を49

動くとする。また，実数�D��D 

� �に対して，点�� 

�D ， �D �における�& �の接線を� DA �とする。

���　 DA �の方程式を求めよ。

���　曲線�& �の� �� �W ��に対応する部分の長さを求めよ。

���　曲線�& �と直線� �A �で囲まれた図形の面積を求めよ。

���　曲線�& �と直線� �A �で囲まれた図形を，\�軸の周りに���回転させてできる回転体の体

　積を求めよ。
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　よって，曲線�& �と直線� �A �の位置関係は右の図のように

　なり，求める面積は図の斜線部分の面積である。

　求める面積を�6 �とすると
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���　求める体積を�9�とすると
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[\] �空間において，点�� 
�，�，� �と点�� 
�，�，� �を結ぶ線分を�@とし，@を�] �軸の周りに50

��回転させてできる図形を�$ �とする。$�を�[�軸の周りに���回転させてできる立体の体積

を求めよ。
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 解説

図形�$ �を表す方程式は　　  ��[ �\ �， �� �] �

図形�$ �の平面�  [ W��� 
��� �W � �による切り口は，右下の図の実線部分である。
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よって，求める立体の体積を�9�とすると
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放物線�\ � �[ ��[�と直線�\ [�で囲まれた部分を，直線�\ [�の周りに���回転させて51

できる立体の体積を求めよ。
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