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また，そのとき，これらの曲線と�[�軸とで囲まれる図形の面積を求めよ。
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座標平面上の原点を�2�とし，点�$�� 
�，� �をとる。また，��K�
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�
�を満たす�K�に対して，12

第���象限の点�3�を，�$23 K�と��23$ 
K
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�を満たすようにとる。
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と�[�軸，\�軸で囲まれた部分の面積を求めよ。
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極方程式�U ��FRVK �によって表される曲線�&�を考える。ただし，偏角�K�の動く範囲は�
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に近い方から順に� �6 ， �6 ，……， Q6 ，……�とするとき，
�Q 

OLP

 N �

Q

& N6 �を求めよ。

S　
SH

�� 
�SH �

 解説

曲線�\ �[H VLQ [ ���[����と�[�軸との交点の�[�座標は， �[H VLQ [ ��から

　　　　　VLQ [ �

ゆえに　　[ QS���Q �，�，�，……�

また　　　'
�[H VLQ [G[ � �[H FRV[�'

�[H FRV[G[

　　　　　　　　　　　 � �[H FRV[��
�[H VLQ [ 
�'

�[H VLQ [G[

よって　　'
�[H VLQ [G[ �

�

�
�[H �FRV[ 
�VLQ [ �&　�&�は積分定数�

整数�N�に対して��NS�[� ��N 
�� S�で�\��，��N 
�� S�[���N 
�� S�で�\���である

から

　　　　　 N6  ' �NS
� ���N � S

�[H VLQ[G[ �
�

� �NS

� ���N � S

� �
�[H � 
�FRV[ VLQ[

　　　　　　 
�

� �
�� ���N � SH �� ��NSH  

�

� �
�SH 
�� N

� 

��SH

��SH ���であるから，無限等比級数�
 N �




& N6 �は収束し

　　　　　
�Q 

OLP

 N �

Q

& N6  
 N �




& N6  
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� �
�SH 
�� ･

�

�� ��SH

　　　　　　　　　� 
��SH �

�� 
�� �SH � 
�� �SH
 

SH

�� 
�SH �

曲線�\ �[H �と�\ �[H FRV[ �で囲まれた図形のうち，�Q 
�� S�[�QS�を満たす部分の19

面積を� QD �とする���Q 
 �，�，�，…… 。

���　'  �[H FRV[�G[ ��[H � 
�SVLQ [ TFRV[ &�を満たす定数�S，T�を求めよ。ただし，&�

　は積分定数である。

���　 �D �の値を求めよ。

���　 QD �の値を求めよ。

���　
�Q 

OLP � 
����D �D �……� QD �を求めよ。
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�
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�
　　���　 �D  
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� � �� ��
�S
�
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�SH

　　　���　 QD  
�

�
�� ��Q � SH � �� ��

�S
�

H 
�SH 　　���　
��SH �

S
�
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�SH �

 解説

���　'
�[H FRV[G[ �[H �SVLQ[ 
�TFRV[ �&

　が成り立つための条件は

　　　　　　 �[H FRV[ � �
�[H � 
�SVLQ[ TFRV[ �　……�①

　が任意の実数�[�について成り立つことである。

　　　　　　�①�の右辺� � �[H �SVLQ[ 
�TFRV[ � �[H �SFRV[ 
�TVLQ[



　　　　　　　　　　 �[H ��S 
�T FRV[��S �
�T VLQ[

　よって　　S�T �，S�T �　　　これを解いて　　S 
�

�
，T �

�

�

���　�� FRV[ ��， �[H !��であるから　　 �[H � �[H FRV[

　よって　　 �D  ' �
S
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��[H �[H FRV[ G[

���������������������������� 
�

S

� �� �[H �' �
S
�

�[H FRV[G[�' S
�

S
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� �

S
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�[H � 
�VLQ[ FRV[ �

�

� S
�
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� �
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�VLQ[ FRV[
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� � �� ��
�S
�H 
�SH

[ � 
�Q � S� �QS

W �������������� ��S

���　 QD  ' � ��Q � S

QS

� 
��[H �[H FRV[ G[

　[ W��Q 
�� S �とおくと　　G[ GW

　[�と�W�の対応は右のようになる。

　よって　　 QD  ' �
S

� ����W � ��Q � SH ��W � ��Q � SH FRV � ��W � 
�Q � S GW

　　　　　　　 �� ��Q � SH ' �
S

� 
��WH �WH FRV W GW �� ��Q � SH �D

　　　　　　　 
�

�
�� ��Q � SH � �� ��

�S
�

H 
�SH

���　����より，数列�� �QD �は初項� �D，公比� �SH �の等比数列であるから

　　　　　　
 N �

Q

& ND  �D ･
�� �QSH

�� �SH

　�� �SH ���であるから　　
�Q 

OLP �QSH  �

　よって　　
�Q 

OLP

 N �

Q

& ND  
�D

�� �SH
 

��� �
�S
�

H �SH
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�� �SH
 

��SH �
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H �
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�SH �

座標平面上に���つの曲線を次のように定める。20

　　　 �& ：[ ��FRVK，\ K�VLQK �����K�S�

　　　 �& ：\ �N
�
�

� 
�[ D ���[�D�

�& ， �& �は点���，
S

� ��� �を共有し，その点で共通の接線をもつとする。

���　N，D�の値を求めよ。

���　[�軸， �& �および� �& �で囲まれる図形の面積を求めよ。
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 解説

���　 �& �について　　
G\

G[
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GK

G[
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�� FRVK

VLQK

　点���，
S

� ��� �は�K 
S

�
�のときであるから，この点における接線の傾きは

　　　　　　　　　　　　

�� FRV
S

�

VLQ
S
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 �

　 �& �について，\ � 
�N

�
�

� 
�[ D

�から，点���，
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� ��� ��における接線の傾きは

　　　　　　
�N

�
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�� D

 �　　すなわち　　��N 
�
�
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�� D 　……�①

　また， �& �は点���，
S

� ��� �を通るから　　
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�
�� �N

�
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�� D 　……�②

　①，②�より　　
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� �� 
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���　 �6 ， �6 �を右の図のようにすると，求める面積�6�は

　　　　　6 ���
S

� ��� � �6 � �6

　ここで　 �6  ' D
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　また　　 �6  ' �
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�
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�
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　よって　　6 
S

�
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�
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�S �
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�
S ���

　　　　　　�� 
�

�� ���
�S ��S 
���

式�[ WDQK，\ 
�

FRVK
�����K ��

S

�
�で表される�[\�平面上の曲線�&�を考える。定数�21

W!��に対し，点�3�� 
W，� �を通り�[�軸に垂直な直線�@�と曲線�&�の交点を�4�とする。曲線�

&，[�軸，\�軸および直線�@�で囲まれた図形の面積を� �6 �とし，△234�の面積を� �6 �とす

る。

���　 �6 ， �6 �を�W�を用いて表せ。

���　極限�
�W 

OLP

��6 �6

ORJ W
�を求めよ。
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 解説

���　[ WDQK，\ 
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FRVK
�から�K�を消去すると　　  �\ �� �[

　よって　　  ��[ �\ ��

　また， �� �K
S

�
�のとき　　 �WDQK �， !FRVK �

　ゆえに　　 �[ �， !\ �

[�
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�6

�6

　よって，曲線�&�は，双曲線の一部

　　　　　　  ��[ �\ ���� �[ �， !\ ��

　である。

　ゆえに，  WDQD W�� ��� �D
S

�
�とおくと，右の図から

　　　　　　  �6 '�
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\G[ ' �
D

\
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�
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�
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GK ' �
D FRVK

�FRV K
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　　　　　　　 ' �
D FRVK

�
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�� �VLQ K

GK

K �� ����D�����

X �� �VLQD

　  VLQK X�とおくと　　  FRVKGK GX

　K�と�X�の対応は右のようになる。
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�
� 
�� �X

　　 ' �
VLQ D �

� �
�
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W
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W
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　よって　　
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曲線�  ��� �[ �[\ �\ ���で囲まれた図形の面積�6 �を求めよ。22
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 解説

�

�

��

��

��

�

2 [�

�\ ��� �[ �[\ �\ ���から　　�  ����\ �[\ � �[ �� �

これを�\�について解くと　　  \ ��[ �( �� �[

��� �[ ��から，曲線は� ��� �[ ��の範囲にある。

　　　　  I � 
[ ��[ �( �� �[

　　　　  J � 
[ ��[ �( �� �[

とすると，定義域内で　　 �I � 
[ J � 
[

よって

　  6 '��
�

� ��� 
��[ �( �� �[ � 
��[ �( �� �[ G[

　��� �'��
�

( �� �[ G[

'��
�

( �� �[ G[�は，半径���の円の面積の�
�

�
�を表すから　　  6  ･･･� S ��

�

�
�S

��つの曲線�  \ �[ ，  �([ (\ ��と�\�軸で囲まれた部分の面積を求めよ。23
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 解説
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�2 �
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 �([ (\ ��から　　  (\ �� ([

�[ �， ��� ([ ��であるから，この曲線が存在する

範囲は　　 �� �[ �

また，��曲線の方程式から�\�を消去して

　　　　　  �([ ( �[ �

よって　　  � 
�([ � � 
�([ � �

ゆえに，��曲線の交点の�[�座標は　　  [ �

�� �[ ��では� �[ �� ([ �であるから

　　　　　 ��[ �
� 
�� ([

よって，求める面積�6 �は　　  6 ' �
�

� ���� 
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�

次の曲線と�[�軸で囲まれた部分の面積を求めよ。24
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 解説

求める面積を�6 �とする。
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�2 �
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�

�

���　  [ �� �W �より　　  G[ �� �W GW

　 �� �W ��のとき， �\ ��であるから
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　 �� �W �S�のとき， �\ ��であるから
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　　　�� S

曲線�  [ �FRV K，  \ �VLQ K �で囲まれた部分の面積を求めよ。25
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FRVK，VLQK �はともに周期��S�の周期関数であるから，

�� �K �S�の範囲で考えればよい。

また　　  �
�
�

[
�
�

\ ��FRV K �VLQ K �

この曲線は�[�軸と�\�軸に関して対称で，概形は右図の

ようになる。

よって，求める面積を�6 �とすると，6 �は第���象限の部

分の面積の���倍である。
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�� �D H�とする。曲線�  \ �[H D�と�[�軸，\�軸および直線�  [ ��で囲まれた部分の面積を26

6� 
D �とする。

���　6� 
D �を求めよ。

���　6� 
D �の最小値とそのときの�D�の値を求めよ。
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 解説
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���　曲線�  \ �[H D�と�[�軸の交点の�[�座標は
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D ��とすると　　  D (H

　よって，6 � 
D �の増減表は右のようになる。

　よって，6 � 
D �は�  D (H �で最小値をとり，

　その値は　　  6 � 
(H ��� H �(H

[�軸に平行な直線と曲線�  \ VLQ[ ��� 
�� �[ �S �が���点で交わるとき，この直線と曲線で27

囲まれた���つの部分の面積の和が最小となるような直線の方程式を求めよ。
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 解説

直線�  \ D�が曲線�  \ VLQ[ ��� 
�� �[ �S �と���点で交わるのは� �� �D ��のときである。

最も左の交点の�[�座標を�D�とすると　　  D VLQD， �� �D
S

�

また，他の���つの交点の�[�座標は� �S D，� ��S D，� ��S D �である。
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6 � 極小 �

6 �の増減表は右のようになる。

よって，6 �は�  D
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�
�で最小になる。

このとき　　  D  VLQ
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したがって，求める直線の方程式は　　  \
�

�

曲線�  \ �[H �上で�[�座標が�Q �の点を� Q3 �とし，線分� �Q �3 Q3 �と曲線�  \ �[H �で囲まれた部28

分の面積を� Q6 �とするとき，次の無限級数の和を求めよ。

　　　　　　　　　　  6 ������6 �6 �6 …… Q6 ……

S　
�� H

�� 
�H �

 解説
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�Q �3 �Q �4 ， Q3 Q4 �とすると
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よって，6 �は初項�
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�の無限等比級数の和であるから
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D�を正の実数とする。��つの曲線� �& ：\ �D[ ���[ 
�� ， �& ：\ [ORJ[ ���[ 
�� �がある点�29

3�を共有し，3�におけるそれぞれの接線が一致している。

���　点�3�の座標と�D�を求めよ。

���　曲線� �& �と� �& �は�3�以外に共有点をもたないことを示せ。

���　曲線� �& ， �& ，および�[�軸で囲まれた図形の面積�6�を求めよ。
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 解説

���　I � 
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�D[ ，J � 
[  [ORJ[ �とし，点�3�の�[�座標を�W��W����とする。
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　外に共有点をもたない。
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　ゆえに，[���で�J � 
[ �は単調に増加する。

　よって，��曲線� �& ， �& �の概形は右の図のようになり，

　求める面積�6�は斜線部分の面積である。
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媒介変数�W�を用いて�  [ �W ，  \ �W �と表される曲線を�& �とする。ただし，W�は実数全体を30

動くとする。また，実数�D��D 

� �に対して，点�� 

�D ， �D �における�& �の接線を� DA �とする。

���　 DA �の方程式を求めよ。

���　曲線�& �の� �� �W ��に対応する部分の長さを求めよ。

���　曲線�& �と直線� �A �で囲まれた図形の面積を求めよ。

���　曲線�& �と直線� �A �で囲まれた図形を，\�軸の周りに���回転させてできる回転体の体

　積を求めよ。
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 解説
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　よって，曲線�& �と直線� �A �の位置関係は右の図のように

　なり，求める面積は図の斜線部分の面積である。

　求める面積を�6 �とすると
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���　求める体積を�9�とすると
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次の���曲線で囲まれた部分の面積の和が，最小となるように定数�N�の値を定めよ。ただ31

し，��N�S�とする。
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よって，��曲線で囲まれた部分の面積の和を�6�と
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