
次の���次関数に最大値，最小値があれば，それを求めよ。１

　　　　　　　　　　　\ � �[ ��[��

S　[ ���で最大値��，最小値はない

 解説
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この関数の式を変形すると

　　　\ � �
� 
�[ � ��

よって，この関数は

　　　[ ���で最大値��

をとる。

また，最小値はない。

次の���次関数に最大値，最小値があれば，それを求めよ。２
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���　\ � �[ ��[��　　　　　　　　　　�������　\ �� �[ ��[

S　���　[ ���で最小値���，最大値はない

　　　���　[ ��で最大値���，最小値はない

　　　���　[ ���で最小値��，最大値はない

　　　���　[ �
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，最小値はない

 解説
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���　この関数の式を変形すると

　　　　　　\ �
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　よって，この関数は�[ ���で最小値����をとる。

　また，最大値はない。
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���　この関数の式を変形すると

　　　　　　\ � �
� 
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　よって，この関数は�[ ��で最大値���をとる。

　また，最小値はない。
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���　この関数の式を変形すると

　　　　　　\ � �
� 
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　よって，この関数は�[ ���で最小値���をとる。

　また，最大値はない。
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���　この関数の式を変形すると

　　　　　　\ ��
�

� ��[
�

�
�
�

�

　よって，この関数は�[ �
�

�
�で最大値�

�

�
�をとる。

　また，最小値はない。

次の関数の最大値と最小値を求めよ。３

　　　　　　　　　\ �[ ��[��　���[ 
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S　[ ��で最大値��，[ ��で最小値��

 解説
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この関数の式は

　\ �
� 
�[ � ��　���[ 
��

と変形され，そのグラフは右の図の実線部分である。

よって，この関数は

　[ ��で最大値���をとり，

　[ ��で最小値���をとる。

次の関数の最大値と最小値を求めよ。４
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S　���　[ ��で最大値��，[ ��で最小値���

　　　���　[ ���で最大値��，[ ��で最小値���

 解説
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���　関数�\ � �[ �������[ 
�� �のグラフは右の

　図の実線部分である。

　よって，この関数は

　　　　　[ ��で最大値���をとり，

　　　　　[ ��で最小値����をとる。
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���　この関数の式は
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　と変形され，そのグラフは右の図の実線部分で

　ある。

　よって，この関数は

　　　　　[ ���で最大値���をとり，

　　　　　[ ��で最小値����をとる。

次の関数に最大値，最小値があれば，それを求めよ。５

　　　　　　　　\ � �[ ��[��　���[ 
��

S　[ ��で最大値��，最小値はない

 解説
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この関数の式は

　\ � �
� 
�[ � ��　���[ 
��

と変形され，そのグラフは右の図の実線部分である。

よって，この関数は

　　[ ��で最大値���をとる。

また，最小値はない。

次の関数に最大値，最小値があれば，それを求めよ。６

���　\ �[ ��[　����[ 
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S　���　  [ ���で最小値���，最大値はない
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，[ ��で最小値���

 解説

���

[�

�\

�2

�

��

��

��

�

���　この関数の式は

　　　　　\ �
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�[ � ��������[ 
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　と変形され，そのグラフは右の図の実線部分で

　ある。

　よって，この関数は�  [ ���で最小値����を

　とる。また，最大値はない。
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���　この関数の式は
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　と変形され，そのグラフは右の図の実線部分で

　ある。よって，この関数は

　　　　[ 
�

�
�で最大値�

��

�
，[ ��で最小値���

　をとる。

２次関数の最大�最小クイズ（数字）



幅����FP�の金属板を，右の図のように，両端から等し

い長さだけ直角に折り曲げて，断面が長方形状の水路

を作る。

このとき，断面積が最大になるようにするためには，

端から何�FP�のところで折り曲げればよいか。また，

７

その断面積の最大値を求めよ。

S　端から���FP�のところで折り曲げればよい，��� �FP

 解説

[�FP [�FP

��� 
��[ �FP

\�FP�
折り曲げる部分の長さを�[�FP，

断面積を�\� �FP �とする。

底の幅は���� 
��[ �FP�で，
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� ��

　　　[!�，����[!�

であるから

　　　��[���　……�①

また，\�は

　　　\ [��� 
��[

　　　�� �� �[ ���[

　　　�� �� �
� 
�[ � ���

よって，①�の範囲の�[�について，

\�は，[ ��で最大値����をとる。

ゆえに，端から���FP�のところで折り曲げればよい。

また，断面積の最大値は���� �FP �である。

長さ����FP�の針金を���つに切り，���本の針金をそれぞれ折り曲げて，正方形を���つ作る。８

それらの正方形の面積の和を最小にするには，針金をどのように切ればよいか。また，そ

の面積の和の最小値を求めよ。

S　半分に切ればよい，��� �FP

 解説

一方の針金の長さを�[�FP�とすると，他方の針金の長さは���� 
�[ �FP�となる。

ここで，�[!��かつ�����[!��より　　��[���　……�①

正方形の面積の和を�6�とすると，正方形の���辺の長さがそれぞれ�
[

�
，
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�2

���

��

�� �� [

6
あるから
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よって，①�の範囲の�[�について，6�は�[ ���で

最小値����をとる。

このとき，他方の針金の長さも����FP�になる。

したがって，針金を半分に切ればよい。

また，面積の和の最小値は���� �FP �である。
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T　��つの正方形の���辺の長さを，それぞれ�[�FP，

　\�FP�とし，��つの面積の和を�6�とすると

　　　　6 �[ � �\ ��……�①，���[��\ ����……�②

　②�より　　\ ���[

　①�に代入して

　　　　　　6 �[ � �
� 
��� [

　　　　　　�� � �
� 
�[ � ���

　[!��かつ�\!��より　　��[���

　この範囲の�[�について，6�は�[ \ ��で最小値����をとる。

　したがって，針金を半分に切ればよい。

　また，面積の和の最小値は���� �FP �である。

$ %
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4
���FP

��FP
毎秒

��FP
毎秒

��辺の長さが����FP�の正方形�$%&'�がある。点�3�

は�$�を出発して，辺�$%�上を毎秒���FP�の速さで�

%�に向かって進み，点�4�は，点�3�と同時に�%�を出

発して，辺�%&�上を毎秒���FP�の速さで�&�に向かっ

て進む。4�が�&�に達するまでに�3，4�間の距離が最

小になるのは，出発してから何秒後か。また，その

最小の距離を求めよ。

９

S　��秒後，�(� �FP

 解説
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出発してから�[�秒後の�3，4�間の距離を�\�FP�とする。

4�は���秒後に�&�に達するから

　　　　　　　��[��　……�①

このとき，$3 [，%4 �[�であるから

　　　　　 �\  �
� 
��� [ � �

� 
�[

　　　　　　 � �[ ���[����

　　　　　　 � �
� 
�[ � ���

よって，①�の範囲の�[�について， �\ �は�[ ��で最小値����をとる。

\!��であるから， �\ �が最小となるとき�\�も最小となる。

ゆえに，\�は�[ ��で最小値�(��  �(� �をとる。

したがって，��秒後に�3，4�間の距離は最小になり，最小の距離は��(� �FP�である。
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放物線�\ �� �[ �と�[�軸で囲まれた部分

に，長方形�3456�を右の図のように�4，

5�が�[�軸上にあるように内接させる。

この長方形の周の長さが最大となるとき

の�36�の長さを求めよ。
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S　�

 解説
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点�5�の座標を�� 
[，� �とすると，点�4，6，3�の座標は，

それぞれ

　　　4�� 
�[，� ，6��[，� 
� �[ ，3���[，� 
� �[

となる。このときグラフより

　　　　　��[��

長方形�3456�の周の長さを�O�とすると

　　　O �45 
�56 �� ��[�� 
� �[ ��

　　　� �� �[ ��[�� �� �
� 
�[ � ���

よって，[ ��のとき，O�は最大値����をとる。

このとき　　36 �[ �･� �

ゆえに，36 ��のとき，長方形�3456�の周の長さは最大になる。

次の���次関数に最大値，最小値があれば，それを求めよ。>各����点@11

���　\ �[ ��[��　　　　　　　　　　　�����　\ �
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S　���　与えられた関数の式を変形すると　　\ �
� 
�[ � ��

　　　　よって，[ ��で最小値���をとる。最大値はない。

　　　���　与えられた関数の式を変形すると　　\ �
�

�
�

� 
�[ � ��

　　　　よって，[ ��で最大値���をとる。最小値はない。

 解説

���　与えられた関数の式を変形すると　　\ �
� 
�[ � ��

　よって，[ ��で最小値���をとる。最大値はない。

���　与えられた関数の式を変形すると　　\ �
�

�
�

� 
�[ � ��

　よって，[ ��で最大値���をとる。最小値はない。

次の関数に最大値，最小値があれば，それを求めよ。>各����点@12
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S　���　与えられた関数の式を変形すると

　　　　　　　　\ �
� 
�[ � ��　����[ 
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　　　　よって，そのグラフは右の図の実線の部分で

　　　　ある。したがって

　　　　　　　　[ �　�で最大値��

　　　　　　　　[ ���で最小値���

　　　　をとる。

　　　���　与えられた関数の式を変形すると

　　　　　　　　\ �� �
� 
�[ � ��　����[ 
��

　　　　よって，そのグラフは右の図の実線の部分で

　　　　ある。したがって

　　　　　　　　[ ���で最大値���をとる。

　　　　　　　　最小値はない。

 解説
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���　与えられた関数の式を変形すると

　　　　　\ �
� 
�[ � ��　����[ 
��

　よって，そのグラフは右の図の実線の部分で

　ある。したがって

　　　　　[ �　�で最大値��

　　　　　[ ���で最小値���

　をとる。

���　与えられた関数の式を変形すると

　　　　　\ �� �
� 
�[ � ��　����[ 
��

　よって，そのグラフは右の図の実線の部分で

　ある。したがって

　　　　　[ ���で最大値���をとる。

　　　　　最小値はない。

周囲の長さが����FP�である長方形の面積を�6� �FP �とするとき，6 �の最大値を求めよ。ま13

た，このとき，長方形はどのような形か。>���点@

S　長方形の縦の長さを�[�FP�とすると，横の長さは�
��� �[

�
 ���[���FP��である。



　　　また，[!�，���[!��であるから　　��[���

　　　この長方形の面積�6��� �FP ��は

　　　　　　　　　6 [��� 
�[  � �
� 
�[ �� ����

　　　[ ���は定義域���[����に含まれるから，6�は�[ ���で最大値�����をとる。

　　　よって，長方形の面積�6�の最大値は����� �FP �である。

　　　このとき，縦の長さも横の長さも����FP�になるから，長方形の形は正方形である。

 解説

長方形の縦の長さを�[�FP�とすると，横の長さは�
��� �[

�
 ���[���FP��である。

また，[!�，���[!��であるから　　��[���

この長方形の面積�6��� �FP ��は

　　　　　　6 [��� 
�[  � �
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�[ �� ����

[ ���は定義域���[����に含まれるから，6�は�[ ���で最大値�����をとる。

よって，長方形の面積�6�の最大値は����� �FP �である。

このとき，縦の長さも横の長さも����FP�になるから，長方形の形は正方形である。

周の長さが����である長方形の対角線の長さ�O�の最小値を求めよ。>���点@14

S　長方形の���辺の長さを�[，\�とする。

　　　�[��\ ���であるから　　\ ���[

　　　辺の長さは正の数であるから　　[!�　かつ　���[!�

　　　すなわち　　　　　　　　��[���　……�①

　　　三平方の定理により　　　 �O  �[ � �\  ��[ �
� 
��� [  �� �[ ��[����

　　　　　　　���　　　　　　　　 � �
� 
�[ �� ����

　　　①�の範囲の�[�について， �O �は�[ ���で最小値�����をとる。

　　　O!��であるから， �O �が最小のとき�O�も最小となる。

　　　よって，O�の最小値は　　(���  ��(�

 解説

長方形の���辺の長さを�[，\�とする。

�[��\ ���であるから　　\ ���[

辺の長さは正の数であるから　　[!�　かつ　���[!�

すなわち　　　　　　　　��[���　……�①

三平方の定理により　　　 �O  �[ � �\  ��[ �
� 
��� [  �� �[ ��[����

　　　　���　　　　　　　　 � �
� 
�[ �� ����

①�の範囲の�[�について， �O �は�[ ���で最小値�����をとる。

O!��であるから， �O �が最小のとき�O�も最小となる。

よって，O�の最小値は　　(���  ��(�

[

\

2 $

%

3

関数�\ � �[ ��[����� 
�[ � のグラフと，�[�軸，\�軸

の交点をそれぞれ�$，%�とする。このグラフ上の点�3

が�[!���かつ��\!��の範囲を動くとき，�3$%�の面

積の最大値を求めよ。>���点@
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6S　� �[ ��[�� ��を解くと　　[ ��，�

　　　よって，$�の座標は　　� 
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　　　3�の座標を

　　　　　　�[，�
�[ ��[ 
�� ������[ 
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　　　とする。

　　　　　△3$% △2$3�△2%3�△2$%�

　　　であるから，△3$%�の面積を�6�とすると
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　　　よって，��[���の範囲で�6�は�[ ��で最大値����をとる。

 解説
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6� �[ ��[�� ��を解くと　　[ ��，�

よって，$�の座標は　　� 
�，�

3�の座標を

　　　�[，�
�[ ��[ 
�� ������[ 
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とする。

　　△3$% △2$3�△2%3�△2$%�

であるから，△3$%�の面積を�6�とすると
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よって，��[���の範囲で�6�は�[ ��で最大値����をとる。

次の���次関数に最大値，最小値があれば，それを求めよ。16
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S　���　[ ��で最小値��，最大値はない　　���　[ ��で最大値��，最小値はない

　　　���　[ ��で最小値��，最大値はない　　���　[ ���で最小値��，最大値はない

　　　���　[ ���で最大値���，最小値はない

 解説
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���　\ � �[ ���のグラフから

　　　[ ��で最小値��，最大値はない。
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最大
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　　　[ ��で最大値��，最小値はない。
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　　　[ ��で最小値��，最大値はない。
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　よって　　[ ���で最小値��，最大値はない。
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　よって　　[ ���で最大値���，最小値はない。

次の関数に最大値，最小値があれば，それを求めよ。17
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 解説
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次の関数に最大値，最小値があれば，それを求めよ。18
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関数�\ �[ ��[���の定義域として次の範囲をとるとき，各場合について，最大値，最19

小値があれば，それを求めよ。
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次の関数に最大値，最小値があれば，それを求めよ。20
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変数�[，\�が条件�[��\ ��を満たすとき，次のものを求めよ。21
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　したがって　　[ �，\ ��のとき最大値��

[�\ �，��[���のとき，[�� �\ �の最大値と最小値を求めよ。22
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分速�����P�で北に進む船�$�と，分速�����P�で西に進む船�%�があり，両船の航路の交点23

を�2�とする。現在，$�は�2�の南���NP，%�は�2�の東���NP�にいる。この���隻の船が最

も近づくとき，両船間の距離は何�NP�か。
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よって，両船間の距離を�\�NP�とすると
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\!��であるから，このとき�\�も最小である。

したがって，\�の最小値は　　(�  �

よって　　��分後に���NP

���　関数�\ �[ �� �[ ����の最小値を求めよ。24

���　���[���のとき，関数�\ �
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��[ ���の最大値，最小値を求めよ。
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次の関数に最大値，最小値があれば，それを求めよ。25
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　　　　　　　[ ��(� �のとき最小値���

実数�[，\�が� �[ � �\  ��を満たすとき，�[� �\ �の最大値と最小値，およびそのときの26

[，\�の値を求めよ。
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実数�[，\�が�� �[ � �\  ��を満たすとき， �[ � �\ ��[�の最大値と最小値，およびそのと27

きの�[，\�の値を求めよ。
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次の���次関数に最大値，最小値があれば，それを求めよ。28
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次の関数の最大値と最小値を求めよ。29
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　よって，そのグラフは図の実線部分である。

　したがって　[ ��で最大値��，

　　　　　　　[ ���で最小値���　をとる。

次の関数に最大値，最小値があれば，それを求めよ。30
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　よって，グラフは図の実線部分である。
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　よって，グラフは図の実線部分である。
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　よって，グラフは図の実線部分である。
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　よって，グラフは図の実線部分である。

　したがって，[ 
�

�
�で最小値��
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　をとる。

　　　　　　　最大値はない。

N�は定数とする。��次関数�\ �[ ��N[�N�の最小値を�P�とする。31

���　P�は�N�の関数である。P�を�N�の式で表せ。

���　N�の関数�P�の最大値とそのときの�N�の値を求めよ。
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 解説

���　\ �[ ��N[�N �
� 
�[ N � �N �N

　よって，\�は�[ �N�で最小値�� �N �N�をとるから　　P � �N �N
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　よって，P�は�N 
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�で最大値�
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�
�をとる。

周囲の長さが����FP�である長方形について，次の問いに答えよ。32

���　この長方形の面積の最大値を求めよ。また，このとき，長方形はどのような形か。

���　この長方形の対角線を���辺とする正方形の面積の最小値を求めよ。

S　���　��� �FP ，正方形　　���　��� �FP

 解説

���　長方形の縦の長さを�[�FP�とすると，横の長さは�
��� �[

�
 ���[���FP��である。

　また，[!�，���[!��であるから　　��[���

　この長方形の面積を�\�� �FP �とすると

　　　　　\ [��� 
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　��[����から，\�は�[ ��で最大値����をとる。

　よって，長方形の面積の最大値は���� �FP �である。

　このとき，縦の長さも横の長さも���FP�になるから，長方形の形は正方形である。

���　長方形の対角線の長さを�]�FP�とすると　　 �]  �[ � �
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　よって，正方形の面積を�6� �FP �とすると
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　��[����から，6�は�[ ��で最小値����をとる。

　よって，正方形の面積の最小値は　　��� �FP

点�3�� 
[， �[ �は，放物線�\ �[ �上の点で，��点�$�� 
��，� ，%�� 
�，�� �の間にある。この33

とき，△$3%�の面積の最大値を求めよ。
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点�3�を通り�[�軸と垂直な直線と，線分�$%�との交点を�4�とする。直線�$%�の方程式は�
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したがって，△$3%�の面積を�6�とすると
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また，定義域は����[���である。



よって，�$3%�の面積は�[ 
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�で最大値�
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　をとる。

�& ���，&$ �，$% �(� �の�△$%&�がある。点�3�は頂点�&�から�$�まで，辺�&$�34

上を毎秒���の速さで進む。点�4�は�3�と同時に頂点�%�を出発し，頂点�&�まで辺�%&�上を毎

秒�(� �の速さで進む。このとき，3，4�間の距離の最小値を求めよ。
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出発して�から�W�秒後の�3，4�間の距離を�\�とする。
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したがって，3，4�間の距離の最小値は　
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���　�[�\ ��のとき， �[ � �\ �の最小値を求めよ。35

���　[��\�� ��のとき，[\�の最大値を求めよ。
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[��，\��，[�\ ��のとき，[�のとりうる値の範囲を求めよ。また， �[ �� �\ �の最大36

値と最小値を求めよ。
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次の関数に最大値，最小値があれば，それを求めよ。37
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　このグラフは，図の実線部分のようになる。

　よって，\�は�W �で最大値���をとる。

　最小値はない。

　W ��のとき　　 �[  �

　よって　　[ ��

　したがって，\�は�[ ���で最大値���をとる。

　最小値はない。
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　このグラフは，図の実線部分のようになる。

　よって，\�は�W ���で最小値����をとる。

　最大値はない。

　W ���のとき　　 �[ ��[ ��
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　したがって，\�は�[ ��で最小値����をとる。

　最大値はない。

�[ � �\  ��のとき， �[ � �\ ��[�の最大値と最小値を求めよ。38
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[�の���次関数�\ � �[ ��P[��P�がある。39

���　この���次関数の最小値�O�を，P�の式で表せ。

���　P�の値を変化させて，����における最小値�O�が最も大きくなるときの�P�の値と，そ

　のときの�O�の値を求めよ。
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[�の���次関数�\ � �[ ��N[��N���の最小値を�0 � 
N �とする。>各����点@40

�����0 � 
N �を求めよ。
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N �の最大値を求めよ。
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